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Fundamentals of Fluid Mechanics

CHAPTER -1

Delinition of @ [luid:-

Fluid mechanies deals with the behaviour of fluids at rest and in motian, It s logieal 1o begin
with wdefinition of . Fluid 15 a substance that deforms coninuousty under the apphcation
of shear (tangential) stress no matier how small the stress may be, Alemoively, we moy
dafme o Twd ps o substunes thid cannot sustain g shear stress when ut rest

T

A solid deforme when 4 shear stress = applied |, bur it deformption doesn™ continge Lo
mercase with e,
Fig 1olGa) shows and 1) shows the deformanon thee delommation of solid and Ouid unider

the actinn of um;}_i.tnut shizar fovee. The deformution In case of solid doesn™ inetease with
time Le.d=08s.--=0, -

From solid mechanics we know that the deforniation is directly proportionil to applied shear
stress ( 7= FA ) provided the elastic imit of the material is not exceeded,

To mepeat the experiment with o fluid between the plates |, 15 us ose i dye miarked 1o outline
a Mg element. When the Shear Turee *F° | i upplicd o (e upper plate , the delormation of

the Muad element continues 1o inerease as lomg us the foree s applied ie 6, >0,

Fluid as a continuum ;-
Flusels wre eommposed of moleculiss. However, in muost engineering apphicalions we are
interested in avernge or macroscopie effect of many melecules: I is the mocroscope effect
that we ordinurily perceive ind medasure. We thus treat o Nuidas infinttely divisible substance
. e continum and do not concern ourselves with the behavioor of idividunl molecules.

The concept of conunuum is (he basis ol clissical Mmd mechanies The contingum
assumption is valid udder normal conditions However 1t breaks down whenever the mean
fre= path of the molecules becames the sume order of magnitide as the smallest significant

ahirsterisnie dimension of the problem o thie problems such us mrefied gus Qow (as
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Fundamentals of Fluid Mechanics

encourtered tn (Tghts imtothe opper reachey of the mtmosphere ), we must ahandeon the
coneept of o continuun i favour of mecroscopic and statistical point of view.

As nconséquende of the continum asswmpiion, cach Nuid propeity is assomed w hove
defmite valie ol every poimt in the space . Thas Tuid propertiss such as density , lemperaiure ,
veloeiey and soron are considered o Be continuesus Tunctions of position and time .

Consider a regiom of Muid as shownin fig 1.5 We are interested In determining the density u

ﬂ.nhﬂl"""‘_;‘
_.l;apq-hu:'l \
viul vaka 4 (— Landinvu s
4.."..44- 1LY

%Mﬂ-j___*'_*j‘i__

= S I

by’ GN T

the poiot "¢’ whose coordinates are x;, vo and zg - Thus the mean density Vo would be given
by I-"—%- In genersl, this will nol be the value of the density ot point "e’ . To determine the
dunsity ot point “¢’, we muist select o small volume | &V, surtounding poiit *¢" and determime
the r|.'|.li-:“a|.jlpll—'ﬂ:I and albowing the yolume w shrink continoously in size.

Assuming that volume Vs Initially eelatively larger (hut still small compared with volume ,
Vo o typical plot might appear as shown in fg 1,5 (h) . When ol becomes so small that i1
cantains only g simall number ot molecules , it becomes impossble to fix o definite value for
ﬂwﬂ-‘ o the value will vary ermenl v us nudecules cress into and aut of thee valume. Thus there
is o lower limuting value of o, designated oV The density ae g pomi is thus defined as

p - ]lmﬂ{—:‘ﬁp" A




Fundamentals of Fluid Mechanics

Sinee pomt ‘ol was arbitrary |, the density at any other pomi i the Mud eould be determimad
in o like manner. If density determinations were made simultaneously ot an infimie oumber of
points i the Muid , we would sbtain g expression e the density distribution s funelion of
the space co-ondinntes , o= pls,y.e,) ot the given instant.

Clearly , the density at o point may vary with time as i result of work deme on or by the fluid
and Jor heat transter W or from the foid. Thus |, the complete representationd the field

repregentation) s given by :p — plx.y,z.1)
Velocity tield:

In o mamner similar to the density , the velocity field ; assuming uid o be g continuum , can
be expressod g5 W= I?H.}';J}

The velocity veotor can be writien in terms of s three scalar componenis |, e

V =ui RIA wik

In general ;o= nixyzt) . v=vixzt) and w=wixy.z.0

If properties ol any point in the flow field do notchange with tme | the Mow is lermed as
stestily. Mathemutically , the definition of stendy flow is %J% ={); where n represents any uid
property.

Thus for steady flow is ::—":- =0 or p=plryz)

i—l: “DorV = Vixyie)

Thus tosteady Tow any property muy vary [rom poine et in the field |, ot all properties

. bt all propertios remiain constant with time avevery point.

One, two and three dimensional lows :

A tlow is classified a5 one twoo or three diniensional based on the aumber of space
conrdinntes reguired to specify the velocity field. Although most ow fields are inherently
three dimensional, analysis based on fewer dimensitns are meuningful,

Consider (or example Lhe steady Now through a long pipe of constant cross scolion
(refer Figl.6a). For from the entrance of the pipe the velocity distribution for o lominar flow

L

can be described as: Ii - L'ﬁ}”l. The velocity field is o function of T only. It is

gy

independent of ¢ npnd # Thus the flow is one dimensionul.
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Figl 64 und Figl.6b
An example of u two-dimensianal flow is illustrated in Figl, 6b.The veloeity distribution is
depicted for a flow between wo diverging straight walls that are infinitely large in 2
direction. Since the channel is considered to be infinitely large in 7 the direction, the velogity
will be identical in all planes perpendicular 1w z axis. Thus the velacity field will be only
Turtetion of % awnd v and the flow can be classified s iwo dimensional. Fg 1.7

wross-section.  Under this - sicuation  the  two

dimensional flow of Fig 1.6 b is modelled as ane
dimensional flow as shown in Figl.7, i.e. velocity
field s a function of < only. However,
‘convenience alone does not justify the assumption such as o uniform flow assumption al a
‘cross section. unless the results of asceptable aceuracy are obinined,
‘Stress Field:

Surface and body forces are encountered in the study of continunm fluid mechanics. Surfice
forces uet on the boundaries of o medium through direct contier. Forces develaped without
physb:n] comtact wd distributed over the volume of the ﬁ'ﬂiﬂ,.m:mmd-nﬂ' hody Torces .

Consider an arca 84, that pusses through ¢’
Consider o force &F yeting on sn ares 54 through
point e’ The normil stress @y aind shear stress Ty,

6 Fn

are then defined as @y = Hmmﬂ_m.ﬂ_.
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T ]im&‘& ﬂq::ﬁrﬁu&mﬂﬁl"ﬁ on the stress is included as a reminder that the stresses are

sswociated with the surface 54, through *e”, huving un outwird narmal in A direction For
any other surfiuce through ‘e the vidues of siressey will be different

‘Cansider a rectangular co-ordinate systent , where slresses act an planes whose normal are In
sy and 2 dirgetions,

Fig 1.y

Fig 1.8 shows the forces components acting o the uren 8, .
The stress components e defined as |

LT 85

Oen = Wil oy

A double subseript notation is used 1o label the stresses. The fl.l'-st-'ﬁlliﬂﬂﬂ{:i‘.pt indicates Ihapim
‘ou which the stress aets and the second. subseript represents the direction in which the stress
Aets, e Gy TEprEsents a stress thit scts on 8- plane (Le the normal to the pline 1s in x
direction ) and agts oy direetion .

Comsideration of srea element 5, would leud 10 the delinition ol the stresses . gy, , @, il
Py - U O sy i et Gz worald Sinilrty Jead 1 he deFiniton G . 1y anl 7z

8]



Fundamentals of Fluid Mechanics

An miimite number of planes can be passed throngh pomt “¢* |, resulting inoan nfimie number
of stressos assooiated with planes through that peint. Fonunately | the state of stress ol a point
can be completely described by specilving the sirésses aotine on theee mutudlly perpendienlor
planes through the point.

Thus | the stress at o point is specified by nine components and given by

Oxy Oyxy Oxg

e St LY b
IM
Lt

Fig .10

Viscosity:

o the absence of @ shear steess _ ere will he noodeforigion. Fluids may be broadly
clissilted gecording (o the relarion between applied shent stress and vate of defomation.

Copsidder the hehaviowr of o fluid element hevveeen the two inlinie plates shown in fig 1,11
The upper plate moves at constant velocity . ou . under the influence of n constant applied
e 4F, .

The shear stress , @y, applicd to the uid element is given by

g By dF,
{.I}l'x - hmﬂ-“r i l"‘-lli} _E_fﬂ}.

Where , &4, s the area of contaet of a Muid element with the plate. During the interval 61,
the fuid element is deformed from position MEOP (o the position M NOP . The rue of
aietormatiom o the fluid-element s given by
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g ba_da
Deformanon rate = ll.mﬁ-,t W
i
- .l
M AL
sa—— TR Y S
; Valex ity 4
Tutd elema)
otime e =t Flughth
§ At lime, i e &

. . . el - .
To caleulate the shear siress, &y, L is desitable 1o l}xpn;-sa?j? interms of readily medwsurable
Guantity, 81 = Gu &t
Adso lor smull angles | 61 = Gy S

Equuting these two expressions , we have

e _
& Ay

: L il
Tuking limit of both sidies of the expression . 'we obtain ; Ez ﬁ

Thus the fluid element when subjected to shear siess | gy, , experiences a deformation race .

i | i
nven hy— .
B * dy

#Fluids in which shear stress is directly proportional o the nite of deformation are
“Newtonun Muds ™,

f The term Non -Newtonian s osed 100 elussify mowhich shenr stress s onot directly
proportional 10 the fote of delodmation |

Newtonian Fluids :

Mt comman uids e Air | waer and gasoline are hewtonn Tuids onder normud
condibions. Mathematically for Mewtonian Muid we can wrile ¢
tlu

Sy —

o dy

I ome constders the deformuton of two differemt Newionian (Tads . say Glyeenn and water
ane reengmzes that they will deform at different rates under the action of sume gpplied
stress. Glycerin exHibits much more resistanee (o deformation than water - Thos we say it is
more vistous. The constant of proportionality s called | *u” .

10 |
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Thus , Ty =i

T ensure thilt @, his the same sign s that of C%";) . Wet un express
@ )15

Wihere K| (42)[ " i eterned s pparent visosiy.

4 'The fluids in which the apparent viscosity decreases with inereasing deformiation rate (n<1)
are enlled pseudoplastic (shear thining) fluids . Most Non -Newtonian fluids full into this
water,

& 11 the apparent viscosity inereuses with increasing deformation rate (n=1) the fluid is termed
s difatan( shear thickening). Suspension of starch and sand-are examples of dilatant fuids .
# A fluid that behaves as a solid until & minimum vield stress is exceeded nnd subsequently
exhibity  linear relition htween stres and deformution fate |

e = Tyteta ~1(5)

nples are : Clay suspension , drilling muds & tooth paste,

11 |
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Causes of Viscosity,
The causes of yiscosity ina fuid are possibly due 1o two actors () intermolecular foree of

cohesion (1) molecular mometium exchungs

#DE (o stropg cohesive forees between the molecules, any lover in o moving Quid wizs io

g thee adjacent layer to move with an equal speed and thus produces the effect of viscosity

#The individual molecules of a fluid are conuouously i motion and this motion muakes a
possible process of momentium exchange berween loyers. Such nugraton of molecules covses

forces of aceelerntion or decelerion o drag (e Lovers and produces the effoct of viscoxity,

Althungh the process of moleculir momentum exchange ooeors i Hguids, the ntermolecalar
cohesion is the dominant cause of viscosity in o liguid. Since cohesion decreases with

increase in temperature, the liguid viscosity deoreases with increase in temperature.

n guises the intermoleculan cobesive forces are very smull and the viscosity s dictted hy
moleculir momentum exchange. As the random molecular motion increases wit @ rise in

temperature, the viscosity also incrizses accordingly.

Eximple-1An infinite plate i= moved over o second plate on o luyer of liquud. For small gap
withth ., lnear velocity distrboaoen is assumed in the Hguid - Determine

(1) The shear stress on the upper and lower plate

(11 The disections of each shear stresses caleulated (5.

ey :
| =
i =
p—— : - Y
i
Solnty, —
=g,

Sinve the velocity profile is linear jwe hive

T --1(”" -u)_ o
i g i~o } o

! = - Hﬂ AT -
Hence: Tyy|y=g = Tyxly=0 = p—- = constant

12
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Exumple-2

An oil film of viscosity p & thickness <<R lies berween i solid wall and a cireulor dise os
shown in fig B 1.2, The dise is rowted steadily at on angular veloeity £ Noting that bath the
velocity and shenr stress vary with madins ‘", derive an expression for the torque *T” required
tor ot the dish.

Seiln: r

. t £
Assumption @ linear velogity profile, lnminar flow.u=Qr, Ty, ‘—“ﬂ% = ||.I.J—:': dF= 1 dA

dF=p _(”—r)iﬂr dr

h
_ A (R _2Rpfl (R g HuRR?
T= fdr= [ rdF =<5 [frdar = =

Vapor Pressure:

Vapor pressure of o lguid is the partial pressure of the vapour in contacts with the aturated
liguid ot o given temperiturs. When the pressure in o hquid is msduced 10 Tess than vapour
pressure. the figuid may change phase suddenly and Mush,

Surface Tension:

Surface wension is the apparent interfacial tensile swess (force per unit fength of interface) that
pots wheanever o hguid has a density interface, such us when the liquid contacts a gas, vapour,
second liguid, or b sobd. The liguid surfbce appears 1o act as stretched elastic membrang as
sein by nearly spherical shapes of simull tlmp]L-lls' wnd soap bubbles: With some care it may be
possible to place n needle on the water surface and find it supported by suiface tension.

A force halance on o segment of interface shows that there 5 o pressure jump across
the imagmed ¢lastic membrane whenever the interfice is curved. For o water droplet in air,
the pressure in e water is bigher than ambient; the same {5 rue for 4 gas bubble in liguid.
Surface tension also leads o the phenomenon of capillary wives on o liguid surface and

capillary rise or depression as shewn in the figure below.

13
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There are three basic ways to attack  Tluid flow problem. They are equally important for 4
stucdend learning the subjeet.

EI}qulwulmne om integril analysis
(2)Infinitesimal system or differential analysis
(3) Experimentul or dimensional analysis.

In ull cases the flow must satisfy three hasic laws with a thermodynumic state relation und
associated boundary condition.

L. Conservation of mass (Continuity)
2 Balunce of momentum (Newton's 2™ law)
4. Astite relation tike p=p (P, T)
5. Appropriate boundury conditions at solid surface, interfaces. inlets and exits.
Hlow patems;

uﬁiﬁ%:mutwm Fuurhnnctmu ufpnimrmam

L. Stream line- A stregmline bs u line drawn in the flow Held so that it is tngent to the line
velocity feld atu given instnt.

2, Path Jine- Actual path traversed by a fluid particle.

14 |
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A0 Streak line- Streak foe is the Joous of the particles tha bave carbier passed through o
preseribed point. )

4. Time line — Time line is a set of Muid particles that form i line at 8 given instant .
Foir stream lings :  dF < =1}

toF ey
dx dy dz| =0
e or owl

20w dy=vdz )= fw dx = dz ) = Reev dx = dy ) = 0
E» wdjr—vdn wdx =udz & vdx=udy,

dy _ dz
So: 5 v W

Ex: A velocity field given by ¥ = A xi—A y . x. yare in meters . units of velocity in ms,
A=03s5™

() obtain an equation for stream line in the x.y plane.

(h) Stream line plot through (28,08

() Velocity of a particls at o point (2,8.0)

(d) Pogition att = 65 af pm‘uch.. located ot (2,8,0)

(e) Velocity of particle ot position found in (d)

(1) Equatin of path line o particle located st 28,0) ut 10

Soln:

(a) For stream lines ; {i=%

o B4y '
ax uAy_#

- g
2 Iny=-lny+C
= Inxy=0C
= xy =0

(bisueam fime plot through ( X0,y 0)
= gy =C

=16
= xy_ 16

() V=061-06]
Wo=ax., Z-oac L FLoafiar
% In(y=At , =g

i ) :
vi=-Ay, %—- Ay . }Ef:-;\f;ﬂ

15 |
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= In(Sy=-A1 , =40
Fo Fa

Ati=6s;x=2e"*"= |21 m
. :!‘-:E E—-D.m-:n e 132 m
(@ V=03%2.11-03%132] = 3.631 0.396]

i) To determine the equation of the path line |, we use the pimametnc equation :

x=xge™ md y=yp €™ amd elimimate ‘1
=ORY =Xy ¥a
Remarks ¢

{0) The eepuation of strewm B throwgh (g, v 0 i eguation of the path Tiae tneed oot by
particle passing through (2w lire same as the flow s steady.

th) In following o particle ( Lagrangian method of deseription |, both the coordinates of the
particte (x,y) and the companent ( uy, & v, ) are functions of tme.

Example -2:

A flow is described by velocity feld, ¥ =ay I+t j. whered =157, b= 0.5 m/s® . Atg=2s,
what are the conrdinates of e paricle that passed through (1.2) at t=0 7 A =35 , what are
the coondinates of the particle that passed though the point (1,2) at 1= 2s .

Plost thee path ling and streak lne throogh point ¢ 1,20 und comphre with the stream lings
through the same potat ( L2) st insane, 1= 0,12 & 35,

Soln:
Path line and streak fine are based on parametric equations (or & particle .

=2 b, s dy =bt-dt
a1 -

B gy Eu.*—g 2y

® YeYo—3 Ly

! i T} ’
&u =%§:ay =ul ¥p+ Mt ta®) 1

L & .
= f;u‘ix—fnu[”fl’u+;{f‘—rl,*j | Le

b v]
= (= xph=a vkt tg) - S 05—t

ali Ve -
Poax=xg Hayvglt-ta)d v = | f-—a“ )= ot ty) |

(ap For g — 0 and (g, v ) = (120, 80t =25 we have
= =2 :%Mj
= oy =3m
u_

5 k=] 4 2(2:0) Jfl'—"’t; 0l = 5.67 m

(h)Fur ty — 2 and (xy , vg) — (12 Thus at't — 35

16
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We tave , y 2= 28— 1) =2 (94) = 1 25
= y=325m

& x=142032) 2 f‘”’“

Fowhy L dtE.a |

= 142004 F (P-4 ) f=358m
(60 The stesk fie atany given iy b ofed by varyin 'y’
it prart ()« path Tioe of pusticle Jocawed b (% . y) at tyi O

tols) [t [ Xm) | Yy
o o |1 2
0] I [308 |23
3] 2 567 .06
i 3 8.25 435

#part (b): path lines of 4 particle located a1 Gy .yl at tg =2

talsh | Hs) X X
. 2 1 2
2 3 356 |[325
1 |4 7.67 |50
' s 'd__#—ﬂ
= v Gy
@ ydy=""dx
2t
oyt === x o
This ¢ =" = 225 x,
For (xg . ¥o) = {1,2), for different value of 1",
Fort=0;c=(2)* =4
t=lw=4 —'-;'.1.-}1 =3

t1=2=4- i M =2

17|
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(Rie=a-(3)=

T IEE 2 3
0= 4 30 2 |

X Y | Y Y Y
T |2 |2 3 I3
1 (2 (224 (245 265
3 |2 |245 |283 |16
4 |2 | 265 1316 |361
§ |2 [25% 1346 |40
6 |2 |30 374 |43
7|2 [316 400 |4.69

tols) [ [ Xum) | Yim
N E S 425
] 3 | 66T 4000
2 3 |3s58 |33
3 ER K 20

18 |
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CHAPTER - 2
FLUID STATICS

In the previous chapter , we defined as well as demoustrated that fluid at rest cannot sustain
sheir stress . how small it may be. The same is tue for fluids in = r:gid bady™ motion,
Therefore, Tuids either ot rest or in “rigid body™ motion are able to sustain only normal

siresses. Analysis of hydrostatic cuses is (hus appreciably simpler than that for fuids
undergeing angular deformation.

Mere simplicity doesn’t justify vur study of subject . Normal forces transmitted by fluids are
ipartant in many prictical sivbuons. Using the principles of hydsostatics we con compute
forces on submerged ohjeats, duwﬂuped 1mmrmts for mensuring  pressure,  forcey
-&wa[ﬂpcd by hydtaulic systems in applications such as industrial press or automebile hrakes.

I stasic Auid or i @ Aoid undergoing rgid-body motion, o Maid particle rewing its identity
for all tme and Moid slements do not deform. Thus we shall apply Newton's second law of
miotion to evaluate the forces oting on the piricls.

Ihe basic equations of [uid statics :

For o differential fluid element , the body force is. dFy =@ dm = g pdv
:{hul‘e g:riwh‘y ik the t'ml}-' brﬂ;r furee mmui&md;whm g 1% the Toeal m'nuit-v"ﬁ'l:ut{fr.p is

.In-_a stutic fuid no #!mn.r f-tm!a can h: pm_&n.m. 'Ifhu_ﬂ-ﬂ:t p?_!_lry_: !gl-ll'fﬁ-l-_lt _Fnrc:: is.ﬂu: pressuns
force. Pressure Is o scular field, p = pix.y.z) ; the pressure varies with position within the
el

19 |
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Pressure at the Jeftface : By = p r% i—y}i

Pressure af the right face : Fr=1(p .f._” ‘:j

Pressure force at the left fage :F= ( p—ﬁg}dx dz j

Pressure fovee al the nghe fuee (Fy = (p +:%- uTy'j:Ix e (=])

Similarly writing for all the surfaces |, we have

dﬂ—flp-——}dvd_.uip L "‘"’ 2 Sy dz (+0) 4 :p-”" Sidx dz §
+1p—a:_”}ruhdz{;;+ |_p+"—" E-jdxd} Hrj—J.|1+——}{1!ti v (-k)

Collecting and ¢oncealing terms . we obiain |

— ,ﬂp I"I'P
xlF;_-{-fH j"ﬂp .Fu.' ]ﬂlld‘v‘l{f

" a.']f*‘; == (¥p) dx dv de
Thuis

Net foree acting on' the body!

FOdF =dF +dFy = (- b pg ) dedy dz
» dF = ¥p+ pd s

or. i a per unil vidume basis;

I ={~-¥p+pi) (21

Fow a fuid particle, Nowon's socond law ean bie exprossol s dF =i dm=4a pdy
h —=ap -32.2)

Comparing 2.1 & 22, we have

~Vptpg=ap

For g static Muid , & =0 Thud we oblwin | - %p + pg =0

Thie commpranonl Lyuukions ure G=-zk
ol =0=
_3: +pge= i) = u_.”.h'

20
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We can write :_:: —ng
Restrictions: (1) Static Muid

(1) gravity is the only body force
iy e s dsovertcal upward

By F,
Pabs o

P=0
#Pressure variation in a static fluid ¢

i =
"‘E = -pg—mnmm

w s -

» P—Py=-pyZ-2y)

# P Py=-plZy - 7)= pih
Ex:2. 1 A tube of small dismeter is dipped mtera ligod m un open contamer, Obtrm an
expression foe the chunge n the liguid leve] within thee tube ciuyed by the vurfisce lension,
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Sulm:

LF, =allDeosth - pgAy =10

Neglectimg the volume of the liquid above Ah , we abtuin
AV =2 D7 Al

Thus 2 gl Deos - pg D Ab =0

 Amasd)

# Ah=
e

Mula Fluid Manometer:

Ex2.2 Find the pressure at "A'.

Solnify 4 pye =015 ~pue=045 + ppa w15 - pug<l3 =B

#1nclined Tube manometer:

Ex2.3 Given - Inelined—itibg reservoir manomeler .
Fand : Expression for "L m tenms of AP
HOunen expression for munomeler sensitivity

#parameter valtes that give maximum sensitivily

22 |
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Soln:

Equiting pressures an cither side of Level -2, we have: AP = 1, g (h=H)

T elmidnute "H* L we recogmise that the valurme of manometer liquid remains constant §e the
s urme displueed from e reservorr st e equal (o the volome nse m e wbe,

Thus : 202K =2 d?L
F H=LE)? [

- -t i B 1
AP = oy [Lsin0 + LEEE pield siod (5]

W

AR

Thas, L= ———
o s+ ()|

To ohtain an expression for sensitivity . express AP in terms of an equivident water column

helght . b,
| E

AP=p, gl 2
(Combinlng equation | &2, we have

i i,

Thig, §=—=—————
e sgluns (2]

Where , SG ==

The expression 'S’ for sensitivity shows that t0 Increase sensitivity SG | sind) and %ﬁhﬂi}m be
winde mn smnll us possible,

23|
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LIvdrosiatic Force on the plane surface which is inclined at an angle '0” 10

horizonial free surlace:

We wish o determing the resultint hydmstate lorce on the plane surface which §s Tnclined a
angle "6 1o the horizont] free surfice.
Singe there can be no shear stresses in o static fluid | the hydeostatic foree on any element of
the surface must act-nermal t the surface The pressure foree scting onan element dod of the
wpper surfacs is given by dF =< pdd :

—

sbaim

——

\* T {’1:- -

The neeative sign dindicates that the pressure forée acts ngainst the surfuee fe i the dirdction
opposite to the area dA Fp = [, —pdA
IV the Tree surface s ot pressure { Py = Py ), then, p=p, — peh
[Exl = [lmg + pgh)aA = pait | pgy sindda
~ 1Fl = poA = pesin0 [ ydA
But [ ydA = ydA
Thus , [Fel = ppd + pryved smb =, = peve smi)A
Where i, 1s the vertical distance between free surface and dentroid of the area |

#Ta evalunte the centre of pressure (¢ p) or the poind of application of the nesultant force

The point of application of the resultant forde must be such that the moment of the resultmt
frrce ahout uny wxis s equal (0 the sum of the moments of the distributed foree ihout the
SHITE axis,

7 15 the position vector of centre pressure from the arbitrary ongin, then

P el = FedF=-[r=pdd
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Refernng wrfig 2.3 . we can express.
Fr=Fx" 5y
F=x+yf :dd =—dA kand Ty = Fyk
Substituting into equation . we obtain

a1 Jy" e fgh= [OxT 4 yi) =dF =[ (x4 yf pepdak
Evaluating the cross product , we get

2 o Jat by =g = [ (=T xp+ivprda

Equating the conpanents In each direction |
¥ Fy= _l;I ypdd wnd  x° F = j:‘ xpdA #when the umbisnt (etinosphieric) pressaee
acts on both sides of the surface | then py makes no contribution w the net hydrostatic force

on the surface and it may be dropped | If the free surface is at o differeny pressure from the
ambient. then * py" should be stated as —

gauge pressure . while caleulaing the
net force .

o _Japyda [ ppxisingds
y= Ey o gt elnd

o agindf{y=da
- y=
LYy sine
o _ hw

o

But from purallel axis theorem | by = les +A 35

Where o5 s the second moment of the area ahout the centroid sl *#' axis . Thus

—_—
L s

gz sind
Al

Or.y' = tﬁ;l o
Similarly wking moment abour *y" axis .
X Fp = [ xpda

Foxtpasind ye A [ xpghdA = pasing | xydA
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- 5" :ﬁ_??"'r ;Ji}..‘t
' f¥E A¥e

From iy parallel axis thearent Ly =gy 4 Axcye

. L
- - - E:

‘For surface that is symmetric about "y’ axis . x' =x. andhmmmu[[ynmmhﬂ o evatuuee.
Fx 24:Rectungular gute , linged wed ot "AT, w=Sm . Find the resultant Fﬂ!ﬁ-’h ¥ ﬁ-, of the wuter
andd the air on the gute The milined surfuce shown | hinged along edge *A7 | is Smowide |
Determine the resultant foree | Fy |, of the water and air on the inclined surface.

Sola:-
Fu= [ pdd=—[]pgysinidwdy k

B =T Ly TR o1k
= Fr =-588.01 KN

Furee acts in negative *2” direetion.

Taking manent bt S QOUER Pl ™ O ani i fioe slicfiee, We dbiaiy

¥ Fe= [,y pdA= .EH ¥.p 9 sin30w dy
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P L g

Z y* H(S8RO1 <10%)=3658.73410°

Yy =622m
#To find x* ; we can tke moment ahout ¥ axis through point "o,
¥ K= [pxpda= [ [ pyp sin30 dx dy

Y g’.:-d:r-ﬁ.pgyﬂnsﬂ:dy:g-.f::ﬁgymsﬁ; wdy
L
» x"=7=215m

Altermafive way: Ry directly using equarions:

Fe=pehe A=pul
T4 Zemn 30 =45

oy N AR
Rl e
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Ex2.5: A pressurised tnk contuins ol (SG=0.9) anid has a square., 0,6 m by (1L6m plate bolted
1o ils sidie w5 shown in fig | mumumwunmmpcfmmmmmkpumm
rmmmw&fsmurnmﬂmlcmm Find t'hc: -'I'I" _tl.u.li,&hmﬂtm of the resuliunt foree
“on the attached plae | flaldont foqe TR T |

Soln :F = (8 +
pehy)x0.36 =244 kN
Fe (e 140,36 =
954N

Fr=F &+ F=254kN
[T “Fg * Is the forée

pcting at o distange 3*
Bor:

Soln: Basic equntions -
s I = fpda

S -0;Taking mowment about the hinge 15 , we lave
ER= [y dF = [ pghy dd

7 dA _rdfydr;

»  y=1sind h=H-y _

> By Sy T sinfpy (# = rsint) e dedd
7 B =2 [ im0 e do
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=EE f"[ﬂ'i = sint) |1 sing Ay
:%F I (ﬂ.*_i.mﬂ Jsinf) di)

L8 a0 - )2 st do)

IR | s -2LE L [V 1 - cos2)an)
MRy A 2

gﬂﬂ'ﬂ} ,ﬂ-‘ﬁ [H]

a
et
> F ‘PErI_'Tl
# F=366kN . LADs )

Ex+2.7 - Repent the example problem
24 ifthe C.8 area of the incﬁmul surface
is wirenlar one . with radius R=2,

Soln- Using imegration;

= [LdF = [, pghdA -
.&fﬂw#ﬁr redg

-y = Gm

@y 6-n -6

= pﬁmiiﬂ_fnﬂ J,'(6 = rsingyr dr di
=" f o~ rsingydr g
@ Fo =211 6%~ 5 sinll do="2 [7"(3k" — L sing) o
<22 3K% - ecosty T
<2 (12201 - 0] = 12911 = 369.4SBkN

E'lmﬂmi}r.fnny'-wa.m. write:
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F———— ——————————————————————"—"—"—"—"————————————"—"—"""""""""""""""""'|
Vo Fe= TydF = 2 (76— rSing)? psind df v d
By wsing formulii < Ky = pghe A= pg( 2+25in30) [1R7 = 369, 458kN

A
o _ e dm e (j'l":t:ir !‘i

¥ =6, 166m

“# Find Iy for o cireulyr C.S
dA = dr rdd

dgp= [t 2 [P do

; A
= g =rxin

But, Tyg+ Igg = I35 (perpendicular xis theorerm)

KA

& gy 20t
oo

2 e -:-a-f}-E-

# Pind Iy e for asemi-circlo:

g IO e e aritn
e

= fgg = 0098 BY
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#tHydrostatic Force on a curved submerged surface:

Consider the curved surface ns shown in fiz. The pressure foree acting on the element of area
, 0A is glven by

We cin write; Fy = [Fjpy + [Py + kg
Where, Fay, Fry&Fg are the camponents of Py inx. y & # diretly respectively,
Fipe =k P = [dF e == [, pdAle =-f, pda.

Since the divection of the foree component can be found by inspection, the ke of vectors i
101 NECERSArY,

Thiis we can write: Fy = jdr pdd;

Where d; is the projection of the element dA on a plane perpendiculor to the ‘1" direction,

With the free sturfoce at atmosplhieric presaure, the vertleal component &f the resulmnt
hiyadrostatic foree an o curved sulimerged surfive is equal wo the totu] welght of the figuid
phove the surface.

Fry :IFd"‘T=IF§h-d'ﬂw:IF§ﬂV ~ PRV

Ex: 29 The gnte shown is hinged a1 “0° mnd hus o constam wadih w = %m . The eguation of

2
tie surfice is x= >/ i+ where u= 4m | The depth ol water to the right of the 15 D= 4m Fiwd

the magnitnde of the force , £, , applied as shown, required 1o mainain the gate in
equilibrium if the weight of the gate s neglected,
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Saln: Herizontl Component of foree:-
Fuy = pighs (WD)= ppi0.5) WD = 392KN 1"

b =hy 2= (5D +Tl;'3 i

uﬂ.ﬁm+—- Jﬁ?m
Vertical ﬁﬁﬂ?ﬂﬁﬁﬁfi
o W o
By = [[7 pwdx = [ pghwde = pgw [¥ hite
7 B pgw [TD—axidx . (where by =D, b= Doy = Dr(a) % )
A _
= (pgwD? 3a)

g

> E=pgw[Dx-aix |]
# F=261kN

—.

> K '—f_a:{ﬂ'—mﬁ}dx*”f:f
b oar= B 12m

Summing momeats about ‘0’

IMy=x"Fy 4 Fa{D = W)= 1F, =0
= F= I6TkN.
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Basic equation; — Vp + pfr = pi
A fish tank 30cm60eni<30cr s partinlly filléd with water (6 be trmspored in an
putomobile, Find allowable depth of water for reasanable- assuramce that it will not spill
during thie rip.
Sl bed=3en— 0 3m
~C U4 Ry 4Ty + k)= (s + Ty + Ta)
Ea;my, =lU=g, & a, =U=a,

g

d

e F:.jq(:"y.:ll
-—-'%ﬁ-ﬁﬂi'

. b

Now we hiive (o fnd un expression for pixy).
o=ax+ Loy
But since the force surface {5 a0 congtant pressure , we have wo;
o e dE
(1= i‘adﬂ' =t =Eﬂr}!'

. i.%m:fm - ‘f%;"'{ the free surfuce is o plane)

. @) _boa,
= wz-;'zl =.1E%!
“ e:%{%}-:ﬂ.t—ﬁt%] a5 b=0.3m]

The minimum allowable value of ‘e’ = (0.3 -d )m
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Thus; 0.3 —d = 0.15 :%)
Henee | dipge =03 =015 15’3

#liguid in rioid body motion with constant aneular speed:

A Cylindricul container | pactiolly (illed with liguid | 1< rotaed ot o constont anpulur speed o,
aboit s axis. Alter @ short time there is no relutive motion; the hguid rotites with the
cylinder as if the svstem were arigid body Determine the shapeof the free surface.

Solm In eyhndrical co-ordinute;

. -|:¢.|Jp m dp
"J";'I—I.,- + r -M Yr3;

& =Vp+pe=pu
Hp _Eﬂy .
-( 1" + - B +e; "':' + P[Hrgr + EHQH"‘ €l I’{Erﬂr A By + Erﬂ:j
For the given pl‘i.ihlém e =ga=0kg, =—g
andag=a, = onda, = —al'r
The component equations are:
2P e . -
e porr: M-{} anil 5~ DB
Henee | plir.z) only
i
dI‘ = I: _E lr iz

Tuking (ry, 2y) ks rélerence point , where the pressure is oy ond the arbiteary point ()
where the pressure is p. we citn ohlam the pressure difference as

B, erdp e
Jo, dp= [, = dr« [—dz

il ry i

> ppy = |1§ irf =1y %) - pplz-z,)
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1w take the reference pomt wl the (ree surface on the cylinder axis | then:
Pi=Pugm Ty =Cand:z, = hy

= 1r;"' E ~
P Parm =P T — pafz—hy)

Since the free surfoce 15 a surfuoe of constant pressure (p= Py ) < the equation of the free
surfice s givén by -

0=pZr? = pate—hy)

i

e

== ;,::;h1+.'@r§:_hl+
.23
Volume of the liquid remuin constunt . Henee 7= HHE;‘ru { without rotation)
With rotation ;

V= .F: frf'?'m'”h + % 43 e

— o 1_‘”.‘."1.
= v=m[ R

2pa
and hy = hy = j"’T;I._

frag? o L ey
Finally: z =y _‘T;Tﬂ_i . I:Ti,j'it
Nate that this expression is valid only for fi; >0, Hence the maximum value of o is given by
I.‘!‘Lh!' 1
Oz — :
[ (R)*= (=) e and w? -—kl,m,,,éhl ) wedg

For gy 1 By =0 |
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Buoyancy:

When 4 stationary body is completely submerged ina faod or partially immersed in o fluid,
the resultant flud force acting on the body s called the *Buoyaney' force, Consider 4 solid
body of arbitrary shape completely submerged in a homogeneous lquid.

dF; =pdd
dFpy = (pguy + pdA; = oy + pghgdA,
dFyz = (P + P2 )4, = (Pugn + Pﬂ.ﬁﬂ.:'.dﬂr

The buoyant force {the net force acting vertically upward) acting on the elémental prism is

UFg= dFy; — dFy = path,-hy Ay = padv

Where, d% =volume of the prism

Henwe, the buoyant force Fyy on the entire submerged body s obtmed oy -
Fp= [ ogd?¢. leFy= pev

Consider a body of urbitmry shipe, having o volome W, iy smenersed fooa Doid, We enclose
the body in o puralielepiped and deaw o free body disgram of the puralizlepiped with the body
removed s shown in fig. The forcesF,, By, 75 &F ire simply the forces acting on the
parallelepiped, wp is the weight of the fluid volume (doted region) Fy is the force the body
is exerring on the flnd.

Alternate approach:-

The forees on vertical surfaces are equal and opposite in direction:and cancel,
e F—F =0,

Fy+Fp+wp = Fy orFp=Fp = Fy —wy
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». Fﬂ_. = prehz:A - prphy A =p;g}i&fh§-=-ﬁ;}-'ﬂf
7 Fg=ppa¥ . where ¥ is volume of the body
The direction of the huoyant force, which is the force of tha fluid an the bady, will be:oppesite to
that of “Fy" shown in fig [FBD of fluid]. Therefore, the buoyant forcd has & magnitude equal to the
‘weight of the:lluld dispiaced by the body-and Is tifected vertically upward. The“line of action of
convenient axis. Summing the momenty aboul an axis perpendicular 1o paper through

Py = Fay = Fuay — Wy
Vg =V —(fr — ¥
Where fp-Athy = Ay b The right hand side is the first moment of the displaced volume ¥
nd is equal 1o the centroid of the volume V. Simitarly it can he shown that the *2” co-ordinal
of buoyant force coincides with 2" co-ordinate of the centroid.

L o e
k’:-u‘.-'_ -
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tability:-

Another interesting ond important problem associuted with submergzed as well as floating.
body isconcemed with the stubiliy of the bodies.

When & hody iy submerged | e equilibrium reguires that the wiight of the hody Leting
theough its C.G should be collinear with the buoyaney force Howevet in general. if the body
i nol homogeneous in diswibution of mass aver the entire volume, the location of centre ol
grwity *G” don’t colncide with the centre of volume Le éentre of bunyancy, ‘B' Depending
-ﬂpﬂhﬂiﬁtﬁlﬂhmmmnnfﬁﬁﬂ.lnmﬂﬁgﬂrﬂww um&nsﬂiﬁmtmuﬁnr

12

-_"-1,.1
J':‘:.:v
sthey) Nialis At |
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Takiiive bl B Ra

#5tubifity problem @ mire complizated for Noating bodies, since ws the budy Totites the
Incation of centee of Buoyancy (centroid of displaced volume) may change.

GM=BM - BG , where —Mdfacentric Height

I GM=0 (M is above G Stable equilibrium

GM-0 (M coineides with G INeutral Equiifium
GM<0) (M is bel ow G Unstable equilibrium

#Thmﬁcal Determination of Metacentric Hei Ell-.
¥ = [adv= [ x(zdd) (1)

After Displacement, depth of elemental volume immersed is (21 xtun0) and the new centre of
B’I.'lﬂj"hnﬂ'j' Iyiﬂ'ﬂi-h‘! expresscd as

Ty = [ xlz+x tanddA. ~>(2)
ubtracting eq, | from .2 , we haye
Wiy = xg) = [ tan0 UA = land [ xPdn
But fx* dA =1,y
Also, for small angular displacement ; 0 =tant
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. |
= y=BMtanh (o5 2y 2= BM )
Since . ¥ BM tanl) = tan £,

> BM="  #Notice tht I,,, [s the M.I at the plain of floatation

: =
> ﬂhﬁﬁﬂ-—zz #Notice that 7 is the immersed volume

s GM- '*HG

.Ifaﬂmunghmtyﬂmmh@m with I‘::zemzﬁam umimgm an angular displacement. the
Tiguidd wall move o keep the free surfuce horizontal. Thus not only the centre of bugyancy

moves . bul also the centre of gravity *G7 moves . in the direction of the movement of "B,

Thus , the stability of the bnd} is reduced, For this reason, hquid which lis 1o be eqrried in g
ﬁhiﬂﬂﬂlt! into a nurnber of separate compartments so as o minimize its movement within

.m,;]ﬁp

From previous disvussion we know that restoning couple b bring huck the body to s ariginal
“equilibrium position is : WGM sint)

Singe the torgue is equal to mass moment of fnerts ; we can write

WGNE s = 1y (553, whre Ty mass M.1f the body thout i of rotuion.
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[0 is small, sind =6 , and equation can hi:wttenu&'.:fimﬂ 0 (3

Eqn (3) represents an SHM.

ORI I I | e
Ihe time period, T = 7= W =2 "wm ;
M

Here tme period is the mme tiken for o complete oscillation from one:
side to othet and buck again, The vscillaion of the body results in a flow
wl the figuid wroand it wnd thig Tow has been neglécled here

EX'-— ].

A rectungular burge of width b and o submerged depth ol H has i u_h cuntre
of gravity at its waterline. Find the metacentric lmght in ferms of _&

henee show thal forstable equiibrium of the l'large =

Soln:
Given that OG - H

Also from geometry '

M i
L= E ] = " = _E’—.ﬂ

OB ?.B_G OCG-0OB ~ H: e

s | = ()
BM= ki
iniersed voleme)

( Noltee that | ¥ s the '

L e |
BM-_— E i

B _Hdelvy
GM=BM-BG= =2 =2 0 -1

For stable equilibfium of the barge; MG=0)

HoR B

F =6 proved.

a1 |
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CHAPTER -3

INTRODUCTION TO DIFFERENTIAL ANALYSIS OF FLUID
MOTION

Differential analysis of Tuid motion:

Integral eguutinons wre wselul when we are motereed on the geoss behmyiour of o flow Geld and
in effeet on various deviees However the integral approach doesa’t enable us 1o obtam
detaited point by point knowledge of flow field.

To obuin this detniled knowledge, we must apply the équations ol uid wetion in differential
o,

Conservation of mass/continuily equation:

The wssumption that o Thod could be treated as o continuous distabution of motter — led
dlicetly o o ficld representation of Muid propertics. The propeny ficlds are defined by
wrntinuous functions of the space coordinales and time, The density and velocity fields are
related by conservation of mass.

Conunuily eqaanon 1o rectangulor co-ondinate systom:-
Let ps consider a differential conteol volume of size Av, Avoand Az

i1

Rate of change of mass inside the control volume = mss flux in— mass flux ow
Mass flunes:
Avleft face: gy As

= i e
At right face: pow dv Az + %ﬂ-f

Al bottom face: p v oy Az

L RER U F )

Al top fuce: pov Ay 2z 1 T.-_I_v'
. ki | p o 1
At back face: pow Av Ay 4 %ﬂ;
Applying equation (1);
cifpdr Ay ax) (e ) - Dlpv} LB )
- = ™ !x.iy&x——ﬂy e Ay Ay ——— Aw Ay
dp | Mew) | Opvd . Mpwd
=29t e T ay ¥ oa O
g . -
== ¥ Voe(pu ) (2]
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Tor find the expression [or an ingempressibie (lows

-m}+pF-u+ﬂ Pp=1

=> (s §iFp )= Vil =0

=> 22t p Vil =0 7
Lot us défine: T° = ——; xio= 2L
Upaf L
Vil =2 (7" ) fSince ¥ -7 = 2 - e 0
o Ty

= — ('l =———

=
==yt ) == 1 10w [1)

P o

Eqn (4) may he approximated as (V. u") =

I l 'l.l'?iJ

( )

The velocity field is approximately solegoidal 1T condition {5} 1s saristied.

| & 1 (3]

For ingompressible flow, p = ponstant i 0 wronp stal¢ment. (Uunfortunitely such stolements
appear in standurd hooks).

For example: Sea witer or steatified alr where density varies from layer to layer but the flow
15 essentially meompressibie as the density of the particles along its path line don't change,

Lt

o5 = 0 does’t necessanly mean that g = constnt

Henee, for incampressible Mow;
Ve 1l =0, doesn"t matier whether the flow is steady or unsteady.

# 1F p o= condlant then the tlow is incompressible, but the converse s not mue, Qe
[neompressible (Tow., the density may or may not be comstant.

MOMENTUM EQUATION:

A dynamie eyuation deseribing il motion miay be obtined by spplying Newton's 29 Law
10 i particle.

Newton's 2" law for a finite system is given by:

= D
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where the lincar momentum P is given by

Brystom = Jqss¥ (2

Then. for an infinitesimal system of mass “di ', Newton®s 2™ law can be wrltten as;
& = dm (2) @

The tmldmvnﬂw roy Incqunﬁnn{:‘.}r:m he expressed as:

Fill A ait
I %b--a?—ma— +F—"
AR g__y‘ - a . w
d‘?—ﬁmluﬁfrﬂy two + 5 ] [4)

Huwthﬁrumﬂdﬁ'ntﬂugnn:hﬁﬂnﬂdﬂmu muhzagﬁsndﬂmmaftbrsﬁrﬁm farces
{ both Nomad forces and tangential forces) and body forces (includes gravity field, electric
field or magnetic Delds}) .

#h

To'dbiuin the surface forces 10y direction we must sum the forces in .y dicection. Thus,

as |
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ﬂnrz

= (e + 2 dx) dy dz — Oy dy dz + (Oys + YdE dz — @y dx dz +

& .
(g + -EJ—- Iddx a‘y - Opg X ely

O stmplifying | we obtuin ;

AR el il — e + (ﬂ“’* 4 ";:f + 222 e dy s

Similar expression for the foree companents it v & ¢ divection are:

e e~ DA - (6]
dF= gy + (B2 + “f’f + 222 ) ey de 7).

Now writing the differential form of equation of motion:

doyy Yoy -:.'l.s” flil it du
— = — —— . r— P om— {81
[:.ng+ A il T - ﬂr tr'r,v L -I-ll. ﬂr';l J
i o, it ﬁlu .
__EE __12 i ;__ et b P i il
P8y + Yo T TR " -HJ ay " ¢!
g Moee Ay .-iw aw iw i
N — i —— g — = ot ey i - A T (4
(o + -t 5t 5 = PGt W)

- Newtonjun fluid - Navier-stokes equation:

The srresses miy be expressed in ferms of veloctiy griadients & Tutd properties in rectang il
coOrehimates as folows

T
-ﬂ.:..'r' =i fi—= Bt = EJ
At Fip

dr

-, =
Ty _—F—] #FV |2‘H5
W

oz = -F - '#F V2 Pu

Ty = % {ﬂn' iy Hu]

a6 |
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G =-P=2UV-V 247 .V
By =P= X (V-7

Where ‘P is the local thermodynamic pressure, and *X is co-efficient of hulk viscosity.
al in

It iy convenient 1o hove o means of deseribing mathematicnlly any pacticulor pattern of ow.

tream function for two dimensi ompressible [low:

A mathemuticul device thot servey this purpose iy the simegm function, g, The stresm function
i formulited 48 a relation between the streamlines and the satement of conservition of miss,
The stream function aw(x, vot) s p single mathematical function that replaces two velocity
cernponEnts, . voand v v

For i two dimensional incompressible flow [ the xy pline, conservation of mass can be
ot " o _

wriltEn as —+ -
ooy

i,

. . s &
If @ continuous function i vor) called stream funeton is defined such that =Y nd
o

v A then the continuity equation is satisfTed exactly.

-~ =

ox

=T L 2
; o i — : X
Then —+— = L £ =1} and the continuity equation |s satsfied exactly,
e dv Sy dvile

I s 15 an elemerit o length alang the stream line, the equation of streamline is given by:

Vsds=G =Ko+ Jﬁ"li-&{lid: . ;;Irf_v}=H_rrf.i_1-‘—1-w£r:|.

Thus eguation of streamling in a two dimensicral fiow is: wily—vely=10

| L i i
Ther we an writo: ﬂ‘f.m—_wdh B wdkshsasi (1)
i : .

15

Since = wle, i) then at any Instantsy, w o= v ), Thueat agiven instant a chapge in e may be

evaluated as w=x 7).

) 1 o
Thus st arvy instamt, oy =E:Eaft+£:jﬁn.*}.' (2)
b

[
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Comparing Eqn.l and £, we see that piong & instantaneous streamlime dw =0 or ¥ |5 constani

along a streamline. Since differentiol of s exact, the Integral of dir betwesn any two points ina

fow fietd depends on the end points only; Le. B .

Example problem: Stream Function flow in a corner:

Thie velocity field for a steady, incompressiole flow is givan as: V= Axi=A viwith A=0.3s"

Determine the stream function thar will yield this velocity Reld, Plot and interpret the streamiinesin

the first guadrant of xy plane:

Solution:u=Ar= E:-,E

Integration  with  respect  to y  yields:

w'=j%"‘?=+ﬂr}= Anv flx)

where I{x] is an-arbitrary function of x,

fix] can be evaluated asing the expression for v,

Thus we can write,

I

Dy aytt
" el

But from the velocity field description, v=—Ay.Hence ‘?r- =0 or flx} =constant.
ik

Thus, ¥ =Axv+c . The ¢ is arbitrary constant and =an be chosen as zero without any jass in
generality. With c=0 and A=0 35 T wie have, W = AXY, The streamlings in the 1% quadrint is shown
in Fig.Regions of high speed flow occur where The streamiines are close fogethar, Lower-speed flow
pecurs near the orlgin, where the streamling spacing ls wider. The flow looks llke flow in a comaer

formed by a pair of walls,
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Before formulating the effects of force on Muid motion (dynamics), let us consider fist the
motion (Kinémitics] of o fMuid element on 4 Dow el Forconvendnee, we Tnllow o
infinitesimal element of 4 fxed identity (miss)

As the infinitesimal element of muss “dm’ moves in a tlaw tield, several things may happen
ko i Certninly the element rranslates. it undergoes o hnear displucement from J;::r*.z.m VT
The element muy alse rotale (no change io the included n.l.‘l.glﬂ in adjocent sides). In addition
the clement may deform Le. It may undergo Jinear and angulor deformation. Linear
deformation involves o deformiation o whicle planes of element that were originally
perpendicular remain perpendicular. Angulue deformition invalves a diatartion ol the element
it which planes that wens originally perpendicular do nol remaln perpendicular. o general 4
fuid element may undergo o combination of translation, rotation. linear deformation and
angular delormution durimg the course of ity motion,

For pure translation or rotation, the fluid element retains its shape, there is no deformation.
Ihus shear stress doesn't arise a5 & result of pure translation or rotation (sinee for a
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Newtoninn (luitl the shear stress s directly proportionul o the m-ﬂrmgumr'ﬂnﬂmnﬂtiﬁmi
We shall consider Muid rranslation, rottion and deformation in urm. -

Fluid translation:  Acceleration of a flufd partcle in o velocity lield. A general
description of a particle acceleration can be abtained by considering a pamicle moving in a
velocity field. The basic hypothesis of contmuum fluid mechamics hus led us 1o a field
desenption of fluid Aow 0 which the properties of flow field are defined by continuous
fanctions of space and time. In particular, the velocity fisld is given by F=V(xv.50). The
field description is very powerful, since information for the entire flow s given by one
equition,

The problem, then s 10 retuin the field description for the fluid properties and obtain an
expression for acceleration of a fluid particle as it moves in o flow field. Stated simply, the
problem is: -

Ciiven the veloeity lield V- Ve vz, ind the secelention of a Ml particle, @, -

Congider the purricle moving ina velocity field, At time ¢, the partiele is ot the position 1,2

and has velocity corresponding to velocity at that point in space at time ', i.e,
Vol-Vixyizn.

At de ', the purticle has moved to @ new position with co-ordinutes «+dx, 10 ey, 2 +d= and
hoss  velocity given by: T [ =i dey=dy, s s t-+de).

Figst. |
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This s shown el g4

AV, he chinge in velocity of the particle | in moving from location 7° T +dr | is given by
av

— gV av av
= . i —dr
R e T
FPhe total secelprotion of the particle ts given by ;

&—- d_ﬂ: EP- I‘I:l’.p _?ﬁ_d}"p m':.-_n‘fp ETI-:
Pt @y el 9y b 8e dt B

ifx day dzy
S' -||_E. — _E. - i‘l 1 _E. f— ¥
inve —== i, — and T = W

. @ W, W W W

= =l fr—_—
LT i dy dz i
TV e AV v v avoav
g =B e et g g g
o P W ax dy g M (47

soiig oo Ry : oo y s
The derivative yris comimonly culled substuntinl derivative o remmind us that it is computed

for a particle of substance. It i5 often called mateyial derivative or particle derivative.

Fromn equation 4.1 we recogniee thut a Huid particle moving in a fow fiekd may imdergo
acceleration for either of the two reasons. 11 may be accelersted because (s convected into i
region of gher (lower) veloeity. Forexumple, the steady flow through o nozale, in which
by definition, the velacity field 1= not o function of time, a fluid particle will accelerate us it
moves throngh the nozele. The particle is comvected o a region of higher velocity, I a flow
field is unsteady the fluid partiele will undergo an additional “local™ peeeleration, because
the velocity field is a function of ime.

The physical significance of the terms i the eguuation 4.1 18 :

av av av . i
e | — e epmpveetvE accelemition
i ity iz

it )
o local acceleration.

Therefore equation 4.1 can be written as;

=l

e DBV - -
@y == WPV ++

For a steady jnd thrée dimensionnl Dow the equition -E 1 beeomes;
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av | av
e A

= 1:5—1- v % e which is not necessarily zero.

Equation 4,1 may be written in'sealir component squation us;

Rt e e gy (4.2 ua)

A === li— + P + W — (4.2¢)

We have ebriined an expression for the acceleration of a purticle anywhere in the flow field!
this is the Eularian method of description. One substitutes the coondinates of the point into the
field expression fur accelerion.

In the Lagrangion method of desenption. the motion {position. velocity and acceferution) of o
Muid purticle is deseribed s a Tunction of time.
Fluid rotation: A fluid particle moving in a general three dimensional flow feld may
rotute ghout all three coorhnute uxes. The parbele rottion 15 a vector guunbity and 1n gener
w=1im, + fu+ E . ;where ), |s the rotation about v axis,
Toevaluate the components of particle ration vector, we define the angular velooity about
anaxis-as the average angzular velocity of twa initially perpendicular differential line

segmnents m # plane perpendieolio o the axis of rowtion.

T obtain a mathemutical expression for m. . the component of (luid motation about the 2 axis,
consider motion of Muid ina-y plane: The components of velocity il every point in the field
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wre gven by wiey) und viav) Consader Tiest the romtion ol e segment ool length A
Ranation of this line is due o the variation of "y component of velocity. 15 the *y component
of the velogity at point “o " is taken as V., then the *v" component velocity at paint ‘a’ can be
written wsing Tavior expansion series as:
V=1V, ~:—?ﬂ_r
X (- _ﬁ'l.l s J'

i = - 1'_‘:-1
i =AiMpp - = fimy 0 -ﬂf

e
ince Aw= V. <"V ) dt =——Ax.
sinoe  An= (¥ <V, ) dt rm lde

(F)eaxa o
Axdl T dx

I".n',il,_.'I1 - H'.'T'.'.M an

The angular velocity of *eb"is obtined similurly. IF the - component of velogity at polnt 5

. dii ;
15 ¥ +— Ay
dy

4%

Al ay
i —”mﬁL sl o o hma:—-ﬂ at

i _ _ . . P il
—Eﬂ}'.‘ which wall mjate the Nutd element i clock-wise divechion, thuy —ve s 1

mulliphied to make it counter clock-wise divection.

[

i s f H
Bur A = — E-_-i_mﬂ (-ve sign is used to give +ve value of o, )
£r]

{1]1}"4}]&:} ﬂ

Thus e, =Hn, g ayat - ay

The rotation of fluid element abowt =- axis s the average angular velocivy of the twer g lv
perpendicular line segnients, od and ob, in the x-v plane.

ﬂu di
Thus ty, =—{— — —

By vonstdering the romnon ahaut other axes

r?h. ﬂu aw
y=s o= s e ey
o _Lffdw  duy, du  dwy . (dir ) ]
Then ¢ == [(fT‘J' ﬂig) i+ ({iz 34 %= T k| ; which cam be wiitten in

VT molion oy

i 1 -
i —E FxV
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Under what conditions might we expect to bave o Bow without rottion rrotationad fow ) 7

A e particle moving, without any rotation, inoa Oow Geld cannot develop mottion under
the geton of body force or normal surfoce Torees. Development of sowticn in fuid particle.
initially without rotation, regquires the action of shear stresses on the surface of the purticle.
Since shear stress 1w proportional to the mee of aogelor deformaton, then o particle that s
iitially  without rowbion will ot devélop o rfotedion withool  simultanéoes  ongulae
deformation. The shear stress is related (o the rate of angular deformation Through viscosity,
The presence of visoous force means the flow is rotation.

The condition of irrotationality. may be a valld assumption for these regions of a low in
which visgous forces are negligible. (For example . such a region exists outside the: boundary
layer in the flow over a solid surface,)

A term vorticity is defined as twice of the rolatlon as:
F=2w=rx¥

The circulation.” is defined as the line integril of the tangentinl velocity component about i
closed curve fixed inthe flow | = g_ScI-_*' -ds

where dS elemental veetor wngent 1o the curve |, & positive sense corresponds 1o ¢ coonicr
clock-wise path of tegration aeound the curve. A relation between circulation and vorticity
can be obtained by considenng the (uid element us shown;

< |
= 1
R
! T_b ~5]
ald !
2y A
i 1.]| TV‘* %!!L__ ,.-L
a !

A =ndx *{ v+ % dx) 4= (r.r + :——; d_}r) Ax -y

- E.E _ﬂ =3
2\ S'J') AxAy = 2m, Axdy

r=$Ar=§v-ds

=[, 2wy dA

==\ =[ (WxV),d4
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Angular deformotion:  Angular deformation of a flwd element involves chunges 1 the
perpendicular line segments on the il

We see that the rate of ingular deformution of the Huid element in the v plane i the rired of
sileeresse of angle 3™ between the line pa snd ob, Since durng interval Az,

Ap=90=-(4 ﬂ'_{"a."i"ﬂ)

o v da o df
‘:ﬁ“.n-_’at'l' it
Now,

Wi e af _ tu
dt oty hnd ot iy
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INCOMPRESSIBLE INVISCID FLOW

All real fTuids posses viscosity. However, in muny flow cases 11 reasonuble 1o neglect the
effect of viscosity, It is useful o investigate the dynamics of an ideal fluid that is
meompressible wnd has zero viscosity. The imalysis of tdead Auid morion is simpler beciuse
no shear strepses are present in myiscid fow, Normal stresses are the only stresses that must
b considered m thie analysis. For dnon viscoos fud in motion, the gommal siress ot o poiat (s
simie in all divections (scalir quantity) smed equils 10 the negitive of the thermodynamic
pressure; g, = —P.

Momentum eguation for frictionless flow: Buler's equations:

The equations ol motion for foctionless ow, called Buler's equations, can be obtalned from
the genernl equanons of motipn, by putting p =0 and @, — -p.

FH an FiFTS ﬂ'u A
mogesriend o)
ar (&u
1 = l.l'. ki =
18— 55 P\ + -I- Lt + wﬁz
[ I e ) &_v.: ﬂw .E]E
‘”E'_— ('ﬂt' Tu a.r+v gy + Waz)

In wector form 10 can be writien os:

pE— VP = ,r.l(— +u —-|-'u ;F i

=> g —VP=p (g—*f + (F . ‘F)F)

=>|pg —VP= .UF

In evlindrical co-ordinates:

P av, ave | Vg Y av,
Fpg——= (m‘"—!-lf' r+_a_J+ ,a; i)
EI'P ﬂl",y ity Vo (]VH ¥y Vﬂl’r)
0:p g0 ray (az r Dr+r ah"'vf.a'z'i' P

dir ¥ av Vg AL
zpgg =p( G0+ SEHE G+ %5E)
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uations m streamline co-

Applyiriée Newton®s 2" law in stresmwise (the *4") direction to the (uid element of volume
s % dnx dv. amd neglecting visgnus fomoes we phitgin:

(}J_EE dn dx — (P'i‘a—PEdndx -p g sinfi ds dndx = p ng,ds dn dx
Sinplifying the equation we have:

ar
~L —pgsing =pa,

Sinee sinfi = —. we can write:

ap gz b¥ Ll :3_1?'
g B, @y

pds il ar B 1

T obtain Fuler's equation in o direction normal to the streamlines, we apply Newton's 2™
Taw inthe ‘u " ditection to the (od glement. Again, niglecting viscous Torees; we obtain:

(P=Z D) dydy— (P+E L)isdv-p g cospdndxds = pay dndx ds

where ‘A" in the angle between n? direction und vertical ane ", is the aeceleration of the
T paricle inow' direciion,
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e _
X —pgcosf=pa,

i ,
Since €081 = — . we can write:
dn i
g odn fn M

The normwil pecelermiion of the fuid element 19 towards the cantre of corvuture of the

streamling, in the negutive “n" direction. Thus &, = — £3
1a8 gz _¥?

=] e = —_—=
g in 1 "

For steady fow on a horizontal plane, Euler's eguation nommal to the strenmline cun be
Wit as;

=7

v\:l
TR

S

1
p

Above euation indicates thar pressure incresses in the direction ootward from the centre of
curvature of streamlines.

Bemnoeulli’s eguation: Integration of Euler's equation along a stream line for
Derivation using stream line co-ordinates):

Fuler's eyuntion i steady ow will be:

1 iR dz oV
poos & g dy

[Ma Mud partcle moves a distance “ds " along a seeamling, then

AP .

Sods = dp {the change in pressure along “s')
az ) .. . .

= ds =dz (the change in ¢levation along *s")
i : :

Eds =dV (the change in velocity along *s”)

P ,
Thus: *—F— pae = VdV

=::~iE’-+ww+g¢z=n
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== f— ~I— + gz = constant(along ') (5.1

For an incomprossible flow. Le. 'Pis not a function of 'p | we can write:

PV ; i
P +? + gz = comstant(along 's")

Resiriciings.
i.  Steady flow
ii. Incompressible flow
ni.  Inviscid
v, Flow blong o stresm line

“1In gemernl the constant has dillerent valuey along different stresmlines,

* For derivation bsing reciangilim co=ordindles, refer puge-T.

Unsteady Bernoulli's equaniond Intepration of Euler's cquation alonp o stream line):

Lo = OF
FW = T or
_lf}’-_*'_g dx__ Vﬂ

jr s ds ﬂ'

Multiplving de and imegrating along a stream line between mwo ponts *1° and *2°,

2t vii-ut Zav
J1 ;:? ——kgi(g ‘_LJJ+J- —ﬁr’i_f}

Fiw an incompressihie flow, the above equation reduces 1w

+ -l-_f{*;.:——!- +,s.'z +J’l

i.  Incompressible flow
.  FPrctionless flow
i, Flow alopg o strean lne
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Ex: Along pipe is connected (o o lurge reservoir that imitially is lled with water 10 o depth
of 3m. The pipe is 150 mm m diameter and 6 m long. Deterrmine the flow velocity leaving
the pipe as o fonction of time dfter o cap is removed fom its free wnd.

._l'P_%_';* 3

ﬁtlt’#h'ﬁ o

e
e {
| { = -
oo ¢ b St
Ang: Applying Bernoullis equation between | and 2 we have:

B, oW B, Vi 2av
el gy e g e | S
7 2 TRAET T TR Ji e d

AsHumprions:

i, Incompressible Now

i..  FPrctionless flow
1. Flow along o stresm line for * 1" and “2”
iv. Pi=P1=Pun

vi. Z==0
vi.  Zy=h

viii.  Neglect veloeity in reservoir, except for small region near the inlet to the tbe,

Phen; g 2;= gﬁ— +J- ﬂd’r (1)

[T

In view ol assumption "viii', the inlegral becomes

2 1 EP'
1 at d J‘t

In the rube, V = V1. everywhere, so that

Lav LV dvs
I—d_fu drf' Ty et

Substituting in the equation (1)
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_VE L
gh= > L o

Separnting the varables we obinim:

iy ol
2gh-Vi AL

[ntegrating hetween limits V= Oute=0und V = Veare =,

o
[ o ()] .
Sinve tanh™ ' {0) = 0, we obtain 'V - f..a-"':_" e
.;"?.l_h' tamhi—! (J__Eﬁ) :'zE.!_. 2 V 1
=5 :%—- tanh {";E .fﬁ) p .I“n;_'? f ‘:F
' | (ﬂ-rm

Bemoull s equation bsing rectangular coordinates:

-%\H‘-gﬁ— (V -9V

Using the vecw identity:

(V- =V (V- F)— V= (Vx¥)
For frrotationil flow: VeV =0

So (V-9 =29(V-V)

L G " T s B
—;w—gﬁ_ ~V(V-F) =77 (V)
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Consider o displacement in the: Now field from position 7 1o ' F +dr' | the displucemem ‘dr”
belng an arbitrury infinitesimal displacement [n any divection . Taking the dot product of
dF =dx T+ dy ] +uds & with each of the terms, we have

—:;W‘-dﬁ— gk - df = 3?{»’% -t

And hence -$ — gdz =Zd(V?)

. 1 e .
=> L4 24(*) + gdz 0

P ‘I-l-
=5 + 7 82 = constant {5:2)

Sinve "dr” wis an arbitrary displacement, eqoation 527 is valid befween any two points in &
stesly, incompiressible snd inviscid Dow that is irstational,

W df = *d3* e the integrtion is 1o be perfarmed along a siceam line, then taking the dot
product of  ds, we get

[FJF]F-H:::%F[F-F] vds— Vx (FxV)-ds
Here even though [V x F} 1s: ot zero, the product V x (vx F] s

will be zeroas Vx (U 17"} i perpendicular o Voand hence perpendicular o dy,
# A fluid that is initially irrotations) may become rotational if:-

I, There dre significant viscous furees induced by jei<, waked ar solid houndartes, In

these gases Bernowd s equation will not be valid in such viscous regions.

There are entropy gradients caused by shock waves.

3. There are density eradients cavsed by stratification (uneven heating) enther than by
pressure-gradients

4. There are sipnificant non Inertial effecte such as eurth's rotation (The Coriolis
COmponimty,

L

HGL and EGL:

Hydeaulic Grade Line (TIGL) corresponds to the pressure head and stevation head Le: Enerpy
Cirade Lins(EGL) minvs the velocity hiend.

P jh
Et :ﬁ 4 -E—E + z=H (Tolal Bermoulli's constant)
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Principles of a hydraulic Siphon: Consider o container T contnining some liquid. tf
one end of the pipe S completely filled with same Hquid. is dipped fnto the container with the
other end being open snd vertically belaw the free surfice of he liguid In the continer T
‘ther liquid will contisiuously flow from the bontainer T thiough pipe § ani get discharged ar

applying the Bernoulli's equation.
Agpplying the Bemoulli's equation betsween point A and B, we can write
Blner B Vi
e Zy="T R 4 Fy
w2
The pressure ar A and B are same and égqual 1o atmosphenic pressure. Velocity al A s

negligible compured 1o velocity at B, since tie aren of the tank T s very large compared 10
that of the tube S. Hence we get,

¥y =20y 2y} =20
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The nhove expression shisws thut u velocny head o B oo created o the expenses ol the
potentinl head difference between A and B.

Applying the Bernoulli's equation between point A and B, we can write

) TR
ﬂs”qxli_-lp_'r.+ ‘: lz‘,
B PE =R

Conidering the pipe crss fection o be unilorm, we have, fmm confinuity. V- Ve

¥

B B Y
o

Thus we can write; -
Theretore pressure ar C is helow srmospheric und pressure ot D is the lowest as the patential
head is masimum here. The pressure at B should not fall below the vipor pressure of the

liquid, as this may create vapor pockets and may stop the flow,
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CHAPTER -4
Larminar flow through 3 pipe.
Asstmiions:

al Steady
by Parallel Aow in Z- direction V, =0md ¥, =u =10
) Constant property Tuid (5 & pare constant)

d) &xisynuuutric':% =0 V=D

¥

Canlin ity SN

1ark) n 1.8v i e

vooar wodB e 0

Singie W =0= Vi we hove;

v :
SE=0 =1 =¥ (r8)

avy . .
But — = 0) (Axisymmeiric)
a9
=Ve=V.iri=¥in

Consieder a dilferentinl unnulyr control valume:

Applying the foree halance in Z-direction, we have
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(P"‘. r'lrj;'_lj}n'ﬁl" L g TR [F ZTI'."'!!TL E'ur_f “Tl!*hf til_‘]

=2 (Pa= Pyopy) 2mr Ar o+ 2 Az [(Tr) poae = (T1)y] =0
F‘I—f—ﬂi F‘1j + 1T r:

1 d ( rltr)__g{__gﬂ
rdr elr dr m—h(acurmtantj

=%[ﬂ*$]=“~

=T gi =nl +c1

s

fi
== >-.—1—

e » T
syl
dr H i

T =

e B
L “Inr--l—a,
Atr=R; V=10 (NoslipB ()
Atr=10; V= finite

The RHS of the equation will be finite only IFCy =0,
. LJ"E
Thus; v=—++ 3
Wt *

3
Atr=R 0= u-_+ C3

4
= Ly
E ——
7 | I'l"l
: i
b N o = 0 - 4 - :
== — = —[p* = fp#
3 [T S 4 -Iu[ ﬁ}

v== (@ E:- 6]

HW- Evaluate @ = [~ dAd = [v2mrdr

=0 = mit* (;EP)
TE B Wi
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8- the [metion fuctor

The SFEE between (1) & (2) gives;

Tt n)
+:r——+z + @tz |+ h
Cﬂ# 12 ‘) (#‘-‘5‘ g T BTN

@y = gy and Ty = T [velocity profile ismot changing from 1o/ & cis area is consian]

Applying the momentum velution 1o the control volume
(EFI-'F’ — PyrR*) — 1, 2nRL + Y (mR* ) sinf = m(Ty = ) =0

ﬂﬁ—ﬂil-xﬂ'fﬂ- ko et (2)
‘Comparing eqn. (1) & (2), we ha
) A‘Ty L
= il 2
dnRE [

-

o= 3 Syt = o= (D) QL (1= Paner
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O
o= (-85

=My = 'gji"‘w;'ﬂ - S . - (3)

Long back, Julivs Weisback, a German Prof. In 1850, hud shown thi hyp o0 -E- Hngen in his
‘esperimiemt hud found that By e 0¥ appo), H. Bmﬁy i French engimeer prposed o
-dhnensmnlewpammﬂtn *f* which s a function of ['Rea, du::ﬂha;:rtj

ok h‘l

hy = f 5" - - 4

Rewriting Egn. (3) in farm of Eqn. (4), we have

e ) i (1

(R = Pegar)2nr &r + 27 45 | (0)esae = (T)e| + p(2r dr Ax)g sinf =0
Dividing by 2m- 4r 4x

= lime g (%)+ %%{rﬂ.+ Jim g (%)= 0
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(rr) -~ — s 1y

dr_dp

.
dr dx ' M
Putting in Eqn. (1), we can winte:

=~

Because of thi gravity the locil avand average velocity increases for the shove situation ie

i B, BE

I-E;—-'R&laﬂw-mugﬂ'nﬁﬁ

Example:- Dewermine the hewd loss m friction when water Mows at 15°C through o 300 mm
long galvanized pipe d = 150 mm & Q =0.05 m¥s. v = L14 <10" m%s, £ = 0,15 mm. Also
find the pumping power required.
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Solution:- R, = %f": %:3.‘-’?13:1.1:‘:5' f=0.02

Power = pQyhy
The head lost due to friction is called major loss.

Minor losses:- Due o abrupt chimges in geometry, shipe of the pipes (i.e sudden expansion,
‘contraction e1c.), loss in mechonical enerpy ocours, In long duces these losses are very small

‘campared to the frictional loss, & hence they are ferned s minor Ios

The minor head losses may be expressed as iy = K %-ﬂmu K is derermined
‘(a) Sudden conteaction & Enlargements

[

- ]

(b) Entry & Exit Insses (c) Pipe bends (W) Valve & fittings

) Lo Q& D known, AP unknown
) AP, Q& 1 known: Lunknown
) AP, L & D knows, Q unkhown
d) AP, L& € known, D unknown.
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04 =0s=0c
Be = fpa & Doy + Rpg + Beaqy + Bype

Ak

gl ;
e = LI & hegie, = (2~ 1

Q=04+
R S
by = Hi=Hy = [ 52 = ot 35

Sudden Enlargement -

L=
“'h:'T__

1;.-I-IJ'.""
4 | . £

|

Py +p'Ay = A = pads = Qv — )

From experimental evidencep' = py; where p 18 the mean pressute of the eddying fluid over
the annular face -

Thus; .

iy +pi (A=) — pady = pQlve — )
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But: @ = Ayvy, = Asws (from contingiy)

=(py =pylAy = F&_Iv'.tiui -

=P =P = pralvy—va)

. 1=
= wylin =)= —15—=—ghy

2
P Pl — gs? i
= vy vy — 205 = v — vy —2ghy
= 2hy = (py—1)°
; 2
s hy = oy (4]
i gk Az

&

2 Z 2
2 il Az
::fr_g:i[{ﬁ)—l] = :—g

L R
- _—
e Ay
—.',]. ] ﬁf__,

1 [1 Aet?

-l

Where Co= %5= Coefficignt of contractian

Ay
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# MEASUREMENT OF FLOW RATE THRE}UGH'PI[E

Flow rates in a pipe are: usually mensured by providing o co-axinl area contraction within the
pipe & by recording the pressure drop across the contraction. The flow e can be
determined from the pressure drop by struight forward upplication o0f Bernoulli’s Eqn. Three
such How meters operate on this pzmcrpt: e

(i) Venturimeter (i) Orificemneter (iii) Flow nozzle
| Vennmmeter:

o0y <%y

Figure shows o venturimeter inserted ina inelined pipe o measure the Now rate through pipe.
Let us consider a steady. ideal and one dimensional flow of flirid

Applying Bernoulli’s Equation;;
P i P . V3
i G SRR o AL 19
pg 20 ' pg 24
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P —wi

Lt o= ()~ ()

e ()

From pressure balance at sectipn 0-0:-
P g = hy) = et pglae == ity) + prrgh

(m +z1) (= 2z } 4 — )b x%

1 ‘T 1
= Fﬂ-l—;q) (9ﬂ+21)=[pm—pjh.x;- —— (2]
Putting the above value in Bqn. (1);

=
24

1
= (i — pIK *a
From continuity; 4, = A v,

A‘JFZ
Ay

y =

Thus; V& — (:f) VE =29 (—ﬂ:— 1)k

I-“H e Ilflf

@

:3,{; (”‘“ 1) i

=V, = sz

Qu =Ay15= "rl_‘"ﬂ‘_ 2g [h—l)h = {3)
J.‘f_d-_:‘ K

T'he above vilue is the theoretical discharge/flow rate

Measurad value of ‘I, in actual situation will always be greater than that assumed in case of
idenl case due o Iriction. Thus overcsumisies the fow rce. To take this wite aceount, a
onultiplying factor Cy . i incorporated in 2quation (3). Le.,

i St Sl Y 1
Qﬂ:t - Ed -Jlﬂ'i ‘3'3- Eg(.ﬂ' l)h

Value of C, for venturimeter usually Hes between (095 10 0,95, Ttis interesting 1o note that
Q" remuing same whether the pipe s melined or honzontal.
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o= 25 whiere A, is the are of the orifice,

Applying Bemoulli's Equation between | and o2

v pe v
—F—=—Ffy=—Ft— 2
rg 290 pgo2g Tt

ST (B ) - (B g

From pressure balance at section 0405
Pyt pgE = h) = p 4 pglzs = h—2,)4 pmgh

- '?—'-‘lﬂzil"; %*’ﬁ )+ (om =p)h %5

~(1)

= Eﬁ- +_.z¥)"- (ﬁ-*z, ) = me = pJhix % -
Putting the ahove value in Eqn (1)

vi—wf 1
2 (pm = PJ&-K:F

e (2)
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[2.‘;( — l)hl

:['!!I;: -
i Ac 2

-]

IIr::'.'lr:lr = li'm X {:’l-
) B [ x}n|
Qo= M b = Celg Ve = G 00A, 11.'51'
[ea(te—)n]|*
= o= Cahy ﬁ_ﬂE—T}T
Ay

Where Cy = GGy

Orificemeters are less accumte (han venlurirmeters,
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