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TRANSFER FUNCTION 
Introduction: 
Transfer function of a linear time-invariant system is defined as the ratio of the Laplace 

transform of output variable to the Laplace transform of input variable assuming all the initial 

conditions to be zero. The figure 1a shows the system in time domain whereas figure 1b shows 

the system in Laplace domain. 

 

                                   

                                                  
 

Figure 1a.  system in time domain   Fig1b.  system in Laplace domain. 

 

 

   Figure 1. Transfer Function of a system 

If G(s) be the transfer function of the system, we can write mathematically as  

  

G(s) = 
Laplace transform of output 

Laplace transform of input 
 (all initial conditions are zero) 

       = 
𝐶(𝑠)

𝑅(𝑠)
  (all initial conditions are zero)                          ....(1) 

Example: Determine the transfer function of figure 2 shown below. Vi(t) is the input to the 

system and Vo(t) is the output of the system. 

 
Figure 2 

Solution- Let i(t) be the current flowing through the circuit using KVL we can write 

Vi(t)= Ri(t) +  
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡

𝑡

−∞
 

And Vo(t) = 
1

𝐶
∫ 𝑖(𝑡)𝑑𝑡

𝑡

−∞
 

Taking Laplace transfer of the above equation by assuming zero initial condition, we get 

Vi(s) = RI(s) + 
1

𝑠𝐶
 I(s) 

And Vo(s) =  
1

𝑠𝐶
 I(s) 

∴ 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐺(𝑠) =  
Vo(s)

Vi(s)
 = 

1

1+𝑠𝐶𝑅
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BLOCK DIAGRAMS 
 

Block diagram is the pictorial representation of system.  It consists of a single block or a 
combination of blocks. Each block is a functional block. 

Basic Elements of Block Diagram 

The basic elements of a block diagram are a block, the summing point and the take-off point. 
Let us consider the block diagram of a closed loop control system as shown in the following 
figure to identify these elements. 

 

The above block diagram consists of two blocks having transfer functions G(s) and H(s). It is 
also having one summing point and one take-off point. Arrows indicate the direction of the 
flow of signals. Let us now discuss these elements one by one. 

Block 

The transfer function of a component is represented by a block. Block has single input and 
single output. 

The following figure shows a block having input X(s), output Y(s) and the transfer function 
G(s). 

 

Transfer Function, G(s)=Y(s)/X(s) 
⇒Y(s)=G(s)X(s) 

Output of the block is obtained by multiplying transfer function of the block with input. 

Summing Point 

The summing point is represented with a circle having cross (X) inside it. It has two or more 
inputs and single output. It produces the algebraic sum of the inputs. It also performs the 
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summation or subtraction or combination of summation and subtraction of the inputs based on 
the polarity of the inputs. Let us see these three operations one by one. 

The following figure shows the summing point with two inputs (A, B) and one output (Y). 
Here, the inputs A and B have a positive sign. So, the summing point produces the output, Y 
as sum of A and B. 

i.e.,Y = A + B. 

 

The following figure shows the summing point with two inputs (A, B) and one output (Y). 
Here, the inputs A and B are having opposite signs, i.e., A is having positive sign and B is 
having negative sign. So, the summing point produces the output Y as the difference of A and 
B. 

Y = A + (-B) = A - B. 

 

The following figure shows the summing point with three inputs (A, B, C) and one output (Y). 
Here, the inputs A and B are having positive signs and C is having a negative sign. So, the 
summing point produces the output Y as 

Y = A + B + (−C) = A + B − C. 
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Take-off Point 

The take-off point is a point from which the same input signal can be passed through more than 
one branch. That means with the help of take-off point, we can apply the same input to one or 
more blocks, summing points. 

In the following figure, the take-off point is used to connect the same input, R(s) to two more 
blocks. 

 

In the following figure, the take-off point is used to connect the output C(s), as one of the inputs 
to the summing point. 

 

Block Diagram Representation of Electrical Systems 

In this section, let us represent an electrical system with a block diagram. Electrical systems 
contain mainly three basic elements — resistor, inductor and capacitor. 
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Consider a series of RLC circuit as shown in the following figure. Where, Vi(t) and Vo(t) are 
the input and output voltages. Let i(t) be the current passing through the circuit. This circuit is 
in time domain. 

 

By applying the Laplace transform to this circuit, will get the circuit in s-domain. The circuit is 
as shown in the following figure. 

 

From the above circuit, we can write 

I(s)=[Vi(s)−Vo(s)]/R+sL 

⇒I(s)={1/R+sL}{Vi(s)−Vo(s)}       (Equation 1) 
Vo(s)=(1/sC)I(s)         (Equation 2) 

Let us now draw the block diagrams for these two equations individually. And then combine 
those block diagrams properly in order to get the overall block diagram of series of RLC Circuit 
(s-domain). 

Equation 1 can be implemented with a block having the transfer function, 1/R+sL. The input 
and output of this block are {Vi(s)−Vo(s)} and I(s). We require a summing point to 
get {Vi(s)−Vo(s)}. The block diagram of Equation 1 is shown in the following figure. 
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Equation 2 can be implemented with a block having transfer function, 1/sC. The input and 
output of this block are I(s) and Vo(s). The block diagram of Equation 2 is shown in the 
following figure. 

 

The overall block diagram of the series of RLC Circuit (s-domain) is shown in the following 
figure. 

 

Similarly, you can draw the block diagram of any electrical circuit or system just by following 
this simple procedure. 

 Convert the time domain electrical circuit into an s-domain electrical circuit by applying 
Laplace transform. 

 Write down the equations for the current passing through all series branch elements and 
voltage across all shunt branches. 

 Draw the block diagrams for all the above equations individually. 

 Combine all these block diagrams properly in order to get the overall block diagram of 
the electrical circuit (s-domain). 
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Block diagram reduction rules: 

There are three basic types of connections between two blocks. 

Rule 1: Series Connection 
Series connection is also called cascade connection. In the following figure, two blocks having 
transfer functions G1(s) and G2(s) are connected in series. 

 

For this combination, we will get the output Y(s) as 
Y(s) = G2(s) Z(s) 

Where, Z(s) = G1(s) X(s) 
⇒Y(s) = G2(s) [G1(s) X(s)] = G1(s) G2(s) X(s) 

⇒ Y(s) = {G1(s) G2(s)} X(s) 

Compare this equation with the standard form of the output equation, Y(s) = G(s) X(s). 
Where, G(s) = G1(s) G2(s). 

That means we can represent the series connection of two blocks with a single block. The 
transfer function of this single block is the product of the transfer functions of those two 
blocks. The equivalent block diagram is shown below. 

 

Similarly, you can represent series connection of ‘n’ blocks with a single block. The transfer 

function of this single block is the product of the transfer functions of all those ‘n’ blocks.  

Rule 2: Parallel Connection 
The blocks which are connected in parallel will have the same input. In the following figure, 
two blocks having transfer functions G1(s) and G2(s) are connected in parallel. The outputs of 
these two blocks are connected to the summing point. 
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For this combination, we will get the output Y(s) as 
Y(s) = Y1(s) + Y2(s) 

Where, Y1(s) = G1(s) X(s)) and Y2(s) = G2(s) X(s) 
⇒Y(s) = G1(s) X(s) + G2(s) X(s) = {G1(s) + G2(s)} X(s) 

Compare this equation with the standard form of the output equation,  
Y(s) = G(s) X(s) 
Where, G(s) = G1(s) + G2(s) 
That means we can represent the parallel connection of two blocks with a single block. The 
transfer function of this single block is the sum of the transfer functions of those two blocks. 
The equivalent block diagram is shown below. 

 

Similarly, you can represent parallel connection of ‘n’ blocks with a single block. The transfer 

function of this single block is the algebraic sum of the transfer functions of all those ‘n’ 

blocks. 

Rule 3: Feedback Connection 
As we discussed in previous chapters, there are two types of feedback — positive feedback and 
negative feedback. The following figure shows negative feedback control system. Here, two 
blocks having transfer functions G(s) and H(s) form a closed loop. 
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The output of the summing point is - 

E(s) = X(s) − H(s) Y(s) 

The output Y(s) is - 
Y(s) = E(s) G(s) 

Substitute E(s) value in the above equation. 
Y(s) = {X(s) − H(s)Y(s)} G(s)} 

Y(s) {1 + G(s) H(s)} = X(s) G(s) 

⇒Y(s)/X(s) = G(s) / [1 + G(s) H(s)] 

Therefore, the negative feedback closed loop transfer function is G(s) / [1+G(s) H(s)] 

This means we can represent the negative feedback connection of two blocks with a single 
block. The transfer function of this single block is the closed loop transfer function of the 
negative feedback. The equivalent block diagram is shown below. 

 

Similarly, you can represent the positive feedback connection of two blocks with a single block. 
The transfer function of this single block is the closed loop transfer function of the positive 
feedback, i.e., G(s) / [1 − G(s) H(s)] 

Rule 4: Block Diagram Algebra for Summing Points 

There are two possibilities of shifting summing points with respect to blocks − 

 Shifting summing point after the block 

 Shifting summing point before the block 

Let us now see what kind of arrangements need to be done in the above two cases one by one. 
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Rule 4a: Shifting Summing Point after the Block 

Consider the block diagram shown in the following figure. Here, the summing point is present 
before the block. 

 

Summing point has two inputs R(s) and X(s). The output of it is {R(s)+X(s)} 
So, the input to the block G(s) is {R(s)+X(s)} and the output of it is – 

Y(s) = G(s){R(s)+X(s)} 

⇒Y(s) = G(s)R(s) + G(s)X(s)  (Equation 1) 

Now, shift the summing point after the block. This block diagram is shown in the following 
figure. 

 

Output of the block G(s) is G(s)R(s) 

The output of the summing point is 

Y(s)=G(s)R(s)+X(s)   (Equation 2) 

Compare Equation 1 and Equation 2. 

The first term ‘G(s)R(s)′ is same in both the equations. But, there is difference in the second 
term. In order to get the second term also same, we require one more block G(s). It is having 
the input X(s) and the output of this block is given as input to summing point instead of X(s). 
This block diagram is shown in the following figure. 
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Rule 4b: Shifting Summing Point Before the Block 

Consider the block diagram shown in the following figure. Here, the summing point is present 
after the block. 

 

Output of this block diagram is - 

Y(s) = G(s) R(s) + X(s)   (Equation 3) 

Now, shift the summing point before the block. This block diagram is shown in the following 
figure. 

 

Output of this block diagram is - 
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Y(S) = G(s) R(s) + G(s) X(s)   (Equation 4) 

Compare Equation 3 and Equation 4, 

The first term ‘G(s) R(s)′ is same in both equations. But, there is difference in the second term. 
In order to get the second term also same, we require one more block 1/G(s). It is having the 
input X(s) and the output of this block is given as input to summing point instead of X(s). This 
block diagram is shown in the following figure. 

 

Rule 5: Block Diagram Algebra for Take-off Points 

There are two possibilities of shifting the take-off points with respect to blocks − 

 Shifting take-off point after the block 

 Shifting take-off point before the block 

Let us now see what kind of arrangements are to be done in the above two cases, one by one. 

Rule5a: Shifting Take-off Point after the Block 

Consider the block diagram shown in the following figure. In this case, the take-off point is 
present before the block. 

 

Here, X(s) = R(s) and Y(s) = G(s)R(s) 
 When you shift the take-off point after the block, the output Y(s) will be same. But, there is 
difference in X(s) value. So, in order to get the same X(s) value, we require one more 
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block 1/G(s). It is having the input Y(s) and the output is X(s). This block diagram is shown in 
the following figure. 

 

Rule 5b: Shifting Take-off Point Before the Block 

Consider the block diagram shown in the following figure. Here, the take-off point is present 
after the block. 

 

Here, X(s) = Y(s) = G(s)R(s) 
 When you shift the take-off point before the block, the output Y(s) will be same. But, there is 
difference in X(s) value. So, in order to get same X(s) value, we require one more block G(s). It 
is having the input R(s) and the output is X(s). This block diagram is shown in the following 
figure. 
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Rule 6:  Associative Law For Summing Point 

 
This can be better explained by taking below diagram 

 

Y= R(s) – B1 
C(s) = y – B2 = R(s) – B1 – B2 
This law is applicable only to summing points which are connected directly to each other. 
Note:  If there is a block present between two summing points(and hence they are not connected 
directly) then this rule can’t be applied. 

 

Procedure for finding TF by using Block Diagram Reduction Rules 

Follow these rules for simplifying (reducing) the block diagram, which is having many blocks, 
summing points and take-off points. 

 Rule 1 − Check for the blocks connected in series and simplify. 

 Rule 2 − Check for the blocks connected in parallel and simplify. 

 Rule 3 − Check for the blocks connected in feedback loop and simplify. 

 Rule 4 − If there is difficulty with take-off point while simplifying, shift it towards right 
or left of the given block which one is suitable. 

 Rule 5 − If there is difficulty with summing point while simplifying, shift it towards 
right or left of the given block which one is suitable. 

 Rule 6 − Repeat the above steps till you get the simplified form, i.e., single block. 

 

Example 

Consider the block diagram shown in the following figure. Let us simplify (reduce) this block 
diagram using the block diagram reduction rules. 
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Step 1 − Use Rule 1 for blocks G1 and G2. Use Rule 2 for blocks G3 and G4. The modified 
block diagram is shown in the following figure. 

 

Step 2 − Use Rule 3 for blocks G1G2 and H1. Use Rule 4 for shifting take-off point after the 
block G5. The modified block diagram is shown in the following figure. 
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Step 3 − Use Rule 1 for blocks (G3+G4) and G5. The modified block diagram is shown in the 
following figure. 

 

Step 4 − Use Rule 3 for blocks (G3+G4)G5 and H3. The modified block diagram is shown in 
the following figure. 

 

Step 5 − Use Rule 1 for blocks connected in series. The modified block diagram is shown in the 

following figure. 

 

Step 6 − Use Rule 3 for blocks connected in feedback loop. The modified block diagram is 
shown in the following figure. This is the simplified block diagram. 
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Therefore, the transfer function of the system is 

Y(s)/R(s)=G1G2G5
2 (G3 + G4)/(1+ G1G2 H1){1+( G3+ G4) G5H3}G5− G1G2G5 (G3+ G4)H2 

 

Note − Follow these steps in order to calculate the transfer function of the block diagram 
having multiple inputs. 

 Step 1 − Find the transfer function of block diagram by considering one input at a time 

and make the remaining inputs as zero. 

 Step 2 − Repeat step 1 for remaining inputs. 

 Step 3 − Get the overall transfer function by adding all those transfer functions. 
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The block diagram reduction process takes more time for complicated systems. Because, we 
have to draw the (partially simplified) block diagram after each step. So, to overcome this 
drawback, use signal flow graphs (representation). 

 

 

SIGNAL FLOW GRAPHS 
Signal flow graph is a graphical representation of algebraic equations. In this chapter, let us 
discuss the basic concepts related signal flow graph and also learn how to draw signal flow 
graphs. 

Characteristics of SFG: SFG is a graphical representation of the relationship between the 
variables of a set of linear algebraic equations. It doesn't require any reduction technique or 
process. 

o It represents a network in which nodes are used for the representation of system variable 
which is connected by direct branches. 

o SFG is a diagram which represents a set of equations. It consists of nodes and branches 
such that each branch of SFG having an arrow which represents the flow of the signal. 

o It is only applicable to the linear system. 

Terminology used in SFG 

Nodes and branches are the basic elements of signal flow graph. 

1. Node 

Node is a point which represents either a variable or a signal. There are three types of nodes — 
input node, output node and mixed node. 

 Input Node or source− It is a node, which has only outgoing branches. 

 Output Node or sink − It is a node, which has only incoming branches. 

 Mixed Node − It is a node, which has both incoming and outgoing branches. 
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Example 

Let us consider the following signal flow graph to identify these nodes. 

 

 The nodes present in this signal flow graph are y1, y2, y3 and y4. 

 y1 and y4 are the input node and output node respectively. 

 y2 and y3 are mixed nodes. 

2. Branch 

Branch is a line segment which joins two nodes. It has both gain and direction. For example, 
there are four branches in the above signal flow graph. These branches have gains of a, b, 
c and -d. 

3. Forward Path 

It is a path from an input node to an output node in the direction of branch arrow. 

4. Loop: It is a path that starts and ends at the same node. 

 

 

 
 

5. Non-touching loop: Loop is said to be non-touching if they do not have any common node. 

 

 
 

6. Forward path gain: A product of all branches gain along the forward path is called Forward 
path gain. 
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7. Loop Gain: Loop gain is the product of branch gain which travels in the loop. 

 

 
 

Construction of Signal Flow Graph 

Let us construct a signal flow graph by considering the following algebraic equations − 

y2 = a12 y1 +  a42 y4 

y3 = a23 y2 + a53 y5 

y4 = a34 y3 

y5 = a45 y4 + a35 y3 

y6 = a56 y5 

There will be six nodes (y1, y2, y3, y4, y5 and y6) and eight branches in this signal flow graph. 
The gains of the branches are a12, a23, a34, a45, a56, a42, a53 and a35. 

To get the overall signal flow graph, draw the signal flow graph for each equation, then 
combine all these signal flow graphs and then follow the steps given below − 

Step 1 − Signal flow graph for y2 = a12 y1 +  a42 y4 is shown in the following figure. 

 

Step 2 − Signal flow graph for y3 = a23 y2 + a53 y5 is shown in the following figure. 
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Step 3 − Signal flow graph for y4 = a34 y3 is shown in the following figure. 

 

Step 4 − Signal flow graph for y5 = a45 y4 + a35 y3 is shown in the following figure. 

 

Step 5 − Signal flow graph for y6 = a56 y5 is shown in the following figure. 

 

Step 6 − Signal flow graph of overall system is shown in the following figure. 
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Conversion of Block Diagrams into Signal Flow Graphs 

Follow these steps for converting a block diagram into its equivalent signal flow graph. 

 Represent all the signals, variables, summing points and take-off points of block diagram 
as nodes in signal flow graph. 

 Represent the blocks of block diagram as branches in signal flow graph. 

 Represent the transfer functions inside the blocks of block diagram as gains of the 
branches in signal flow graph. 

 Connect the nodes as per the block diagram. If there is connection between two nodes 
(but there is no block in between), then represent the gain of the branch as one. For 
example, between summing points, between summing point and takeoff point, between 
input and summing point, between take-off point and output. 

  

Example 

Let us convert the following block diagram into its equivalent signal flow graph. 
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Represent the input signal R(s) and output signal C(s) of block diagram as input node R(s) and 
output node C(s) of signal flow graph. 
Just for reference, the remaining nodes (y1 to y9) are labelled in the block diagram. There are 
nine nodes other than input and output nodes. That is four nodes for four summing points, four 
nodes for four take-off points and one node for the variable between blocks G1 and G2. 

The following figure shows the equivalent signal flow graph. 

 

With the help of Mason’s gain formula (discussed in the next chapter), you can calculate the 

transfer function of this signal flow graph. This is the advantage of signal flow graphs. Here, we 
no need to simplify (reduce) the signal flow graphs for calculating the transfer function. 

Note: 1. If summing point is present before a take off point it may be assume as same node. 

2. If there is a present of summing point in series (no block with in it), it may be take ias same 
node. 

Ex: Determine transfer function by using Mason’s gain formula. 

 

 

Solution: 
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Mason's Gain Formula 

Let us now discuss the Mason’s Gain Formula. Suppose there are ‘N’ forward paths in a signal 

flow graph. The gain between the input and the output nodes of a signal flow graph is nothing 
but the transfer function of the system. It can be calculated by using Mason’s gain formula. 

Mason’s gain formula is 

T=C(s)/R(s)= (
1

Δ
) ∑ PiΔi𝑁

𝑖=1   

Where, 

 C(s) is the output node 

 R(s) is the input node 

 T is the transfer function or gain between R(s)R(s) and C(s)C(s) 

 Pi is the ith forward path gain 
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Δ=1−(sum of all individual loop gains) + (sum of gain products of all possible two non 
touching loops) − (sum of gain products of all possible three non touching loops)+... 

Δi is obtained from Δ by removing the loops which are touching the ith forward path. 

Consider the following signal flow graph in order to understand the basic terminology involved 
here. 

 

Path 

It is a traversal of branches from one node to any other node in the direction of branch arrows. 
It should not traverse any node more than once. 

Examples  y2→y3→y4→y5 and   y5→y3→y2 

Forward Path 

The path that exists from the input node to the output node is known as forward path. 

Examples − y1→y2→y3→y4→y5→y6   and   y1→y2→y3→y5→y6. 

Forward Path Gain 

It is obtained by calculating the product of all branch gains of the forward path. 

Examples – abcde is the forward path gain of y1→y2→y3→y4→y5→y6 and abge is the 
forward path gain of y1→y2→y3→y5→y6. 

Loop 

The path that starts from one node and ends at the same node is known as loop. Hence, it is a 
closed path. 

Examples   y2→y3→y2 and y3→y5→y3. 

Loop Gain 

It is obtained by calculating the product of all branch gains of a loop. 

Examples − bj is the loop gain of y2→y3→y2 and gh  is the loop gain of y3→y5→y3. 
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Non-touching Loops 

These are the loops, which should not have any common node. 

Examples − The loops y2→y3→y2 and y4→y5→y4 are non-touching. 

Calculation of Transfer Function using Mason’s Gain Formula 

Let us consider the same signal flow graph for finding transfer function. 

 

Number of forward paths, N = 2. 

 First forward path is -  y1→y2→y3→y4→y5→y6. 
 First forward path gain, p1=abcde. 
 Second forward path is -  y1→y2→y3→y5→y6. 
 Second forward path gain, p2=abge. 

Number of individual loops, L = 5. 

Loops are -  y2→y3→y2, y3→y5→y3, y3→y4→y5→y3 , y4→y5→y4 and y5→y5. 
Loop gains are - l1=bj, l2=gh, l3=cdh, l4=di and l5=f 

Number of two non-touching loops = 2. 

 First non-touching loops pair is - y2→y3→y2, y4→y5→y4. 
 Gain product of first non-touching loops pair, l1l4=  bjdi 
 Second non-touching loops pair is - y2→y3→y2, y5→y5 
 Gain product of second non-touching loops pair is - l1l5=bjf 

Higher number of (more than two) non-touching loops are not present in this signal flow graph. 

We know, 

Δ=1− (sum of all individual loop gains) 
+ (sum of gain products of all possible two non touching loops)  

−(sum of gain products of all possible three non touching loops)+... 

Substitute the values in the above equation, 

Δ=1 − (bj+gh+cdh+di+f) + (bjdi+bjf)−(0) 
⇒Δ=1− (bj+gh+cdh+di+f) + bjdi+bjf 
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There is no loop which is non-touching to the first forward path. 

So, Δ1=1 
Similarly, Δ2=1. Since, no loop which is non-touching to the second forward path. 

Substitute, N = 2 in Mason’s gain formula 

 T=C(s)R(s)=[P1Δ1+P2Δ2]/Δ 

Substitute all the necessary values in the above equation. 

T=C(s)R(s)=(abcde)1+(abge)1/[1−(bj+gh+cdh+di+f)+bjdi+bjf] 

⇒T=C(s)R(s)=(abcde)+(abge)/[1−(bj+gh+cdh+di+f)+bjdi+bjf] 

Therefore, the transfer function is - 

T=C(s)R(s)=(abcde)+(abge)/[1−(bj+gh+cdh+di+f)+bjdi+bjf] 
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Time Response Analysis 
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The variation of output with respect to time is known as time response. The time response 
consists of two parts. 

 Transient response 

 Steady state response 

Here, both the transient and the steady states 
are indicated in the figure 1. The responses 
corresponding to these states are known as 
transient and steady state responses. 

Mathematically, we can write the time 
response c(t) as    

      C(t)=Ctr(t)+Css(t)    (1)  Figure 1 Time response of a system 

Where, 

 ctr(t) is the transient response 

 css(t) is the steady state response 

Transient Response 

The transient response is the part of the tie response which goes to zero after large interval of 
time ‘t’. Ideally, this value of ‘t’ is infinity and practically, it is five times constant. 

Mathematically, we can write it as 

                 lim
𝑡→∞

𝐶𝑡𝑟(𝑡)=0 

Steady state Response 

The part of the time response that remains even after the transient response has zero value for 
large values of ‘t’ is known as steady state response. This means, the transient response will 
be zero even during the steady state. 

Example 

Let us find the transient and steady state terms of the time response of the control 
system c(t)=10+5e−t 
Here, the second term 5e−t will be zero as t denotes infinity. So, this is the transient term. And 
the first term 10 remains even as t approaches infinity. So, this is the steady state term. 

Standard Test Signals 

The standard test signals are impulse, step, ramp and parabolic. These signals are used to know 
the performance of the control systems using time response of the output. 

Unit Impulse Signal 

A signal which has zero value everywhere except at t= 0, where its magnitude is infinite. It is 
also known as δ-function. Mathematically: 

δ(t)  = 0  ; t≠0 

        = ∞ ; t = 0          (2) 
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and ∫ δ(t)dt
+∊

−∊
 = 1 where ∊ tends to zero 

The figure (2a) shows unit impulse signal. 

 

 

 

 

 

 

  Figure (2a)     Figure (2b) 

Practically a perfect impulse signal cannot be achieved. It is generally approximated be a pulse 
of unit area as shown in figure (2b). 

An unit impulse signal is the derivative of a step signal i.e., 

δ (t) = 
𝑑 𝑢(𝑡)

𝑑𝑡
            (3) 

Laplace transform of a unit impulse is  

L   [δ (t)] = L   [
𝑑 𝑢(𝑡)

𝑑𝑡
] = s R(s) = 1  (As for step input R(s) = 1/s)   (4) 

 

Unit Step Signal 

A unit step signal is defined as                 r(t) = A u(t)     (5) 

Where u(t)=1; t≥0  

              0; t<0 

u(t) is called as unit step signal. 

By taking Laplace transform of r(t), we have  

R(s) = A/s         (6) 

Following figure 3 shows unit step signal. 

So, the unit step signal exists for all positive values of ‘t’ 

including zero        Figure 3: unit step signal 
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Unit Ramp Signal 

A unit ramp signal, r(t) is defined as 

r(t)= At ; t≥0  

=0 ; t<0     (7) 
The ramp signal starts from zero and increases linearly with time. A ramp signal is the integral 
of a step signal. i.e 

 

Ramp Signal = ∫ step signal  

The figure 4 shows unit ramp signal. 

     
     
            Figure 4 : ramp signal 

Unit Parabolic Signal 

A unit parabolic signal, r(t) is defined as, 

r(t)= At2/2;t≥0 

                                 0 ; t<0                        (8) 

By taking the Laplace transform of equation 8,     
R(s) = A/s3    (9) 

Parabolic signal is integral of a ramp signal. i.e 

Parabolic signal = ∫ ramp signal 

The figure 5 shows the unit parabolic signal.    Figure 5: unit parabolic signal 

  

So, the unit parabolic signal exists for all the positive values of ‘t’ including zero. And its value 
increases non-linearly with respect to ‘t’ during this interval. The value of the unit parabolic 
signal is zero for all the negative values of  ‘t’. 

 

Time Response of the First Order System 

Let us discuss the time response of the first order system. Consider the following block diagram 
of the closed loop control system. Here, an open loop transfer function, 1/sT is connected with a 
unity negative feedback. 
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Figure (6) : Block diagram of a first order system 

We know that the transfer function of the closed loop control system has unity negative 
feedback as, 

C(s)

R(s)
 = 

G(s)

1+G(s)H(s)
  

Substitute, G(s)= 
1

𝑇𝑠
 in the above equation. 

 

                                                  
C(s)

 R(s)
=  

 
1

𝑇𝑠

1+ 
1

𝑇𝑠

 = 
1

1+Ts
     (10) 

The power of s is one in the denominator term. Hence, the above transfer function is of the first 
order and the system is said to be the first order system. 

We can re-write the above equation as 

C(s) = 
1

1+Ts 
R(s)         (11) 

Where, 

 C(s) is the Laplace transform of the output signal c(t), 

 R(s) is the Laplace transform of the input signal r(t), and 

 T is the time constant. 

Impulse Response of First Order System 
For unit impulse signal R(s) = 1 
 

Consider the equation (11), C(s) = 
1

1+Ts 
R(s)     

 
Substitute, R(s) = 1 in the above equation. 

C(s)  = 
1

1+Ts 
                                                                              (12) 

 Rearrange the above equation in one of the standard forms of Laplace transforms. 

C(s) = 
 
1

𝑇

s+ 
1

𝑇

         (13) 
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Apply inverse Laplace transform on both sides. 

c(t)= 
1

𝑇
𝑒

− 
𝑡

𝑇      (14) 

The unit impulse response is shown in the figure 7. The unit impulse response, c(t) is an 
exponential decaying signal for positive values of ‘t’ and it is zero for negative values of ‘t’. 

 

 

   figure 7: Impulse Response of First Order System 

 

Step Response of First Order System 
For unit step signal R(s) = 1/s 

Consider the equation (11), C(s) = 
1

1+Ts 
R(s)     

 

 = C(s)    ؞
1

1+Ts 
 
1

s 
 = 

1

s(1+Ts) 
       (15) 

Taking Partial fractions of Equ. (15) 

C(s) = 
1

s(1+Ts)
  = 

A

s 
 + 

B

1+Ts 
     (16)

  

⇒
1

s(1+Ts)
= 

A(1+Ts)+ Bs

s(1+Ts)
                                    

⇒ 1 = A (sT+1) + Bs     (17) 

By solving Equ. (17), we get  

A = 1 ; B = −T 

Substitute, A = 1 and B = −T in Equ. (16), we get 
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C(s) = 
1

s 
 + 

(−T)

1+Ts 
   

⇒ C(s) = 
1

s 
 -  

1
1

T 
+s 

  

Apply inverse Laplace transform on both the sides. 

c(t) = 1−𝑒−𝑡/𝑇      (18) 

The following figure shows the unit step response. 

  

The value of the unit step response, c(t) is zero at t = 0 and for all negative values of t. It is 
gradually increasing from zero value and finally reaches to one in steady state. So, the steady 
state value depends on the magnitude of the input. 

 

Time Response of Second Order System 

 
Consider the following block diagram of closed loop control system. Here, an open loop 
transfer function, ωn

2 
 / s(s+2ζωn) is connected with a unity negative feedback. 

 

We know that the transfer function of the closed loop control system having unity negative 
feedback as 
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C(s)

R(s)
 = 

G(s)

1+G(s)H(s)
  

Substitute, G(s) = 
𝜔𝑛

2

𝑠(𝑠+2ζ𝜔𝑛)
  in the above equation. 

 

C(s)/R(s) = 

𝜔𝑛
2

𝑠(𝑠+2ζ𝜔𝑛)

1+
𝜔𝑛

2

𝑠(𝑠+2ζ𝜔𝑛)

  = 
𝜔𝑛

2

𝑠2+2ζ𝜔𝑛s+𝜔𝑛
2 

         (19) 

The power of ‘s’ is two in the denominator term. Hence, the above transfer function is of the 

second order and the system is said to be the second order system. 

The characteristic equation is - 

 s2+2ζωns+ωn
2 =0          (20) 

The roots of characteristic equation are - 

S1, S2 = [−2ωn ζ ± √(2ζωn)2 − 4ωn2 ] /2  

 The two roots are imaginary when ζ = 0. 

 The two roots are real and equal when ζ = 1. 

 The two roots are real but not equal when ζ > 1. 

 The two roots are complex conjugate when 0 < ζ < 1. 

We can write C(s)   equation as, 

C(s)  = 
𝜔𝑛

2

𝑠2+2ζ𝜔𝑛s+𝜔𝑛
2 

   R(s)     (21) 

Step Response of Second Order System 

Consider the unit step signal as an input to the second order system. 

Laplace transform of the unit step signal is, 

R(s)=1/s 

We know the transfer function of the second order closed loop control system is, 

C(s)/R(s)  = 
𝝎𝒏

𝟐

𝒔𝟐+𝟐𝛇𝝎𝒏𝐬+𝝎𝒏
𝟐  

 

Case 1: ζ = 0 ( undamped system) 
Substitute, δ=0 in the transfer function. 

C(s)/R(s) = 
𝜔𝑛

2

𝑠2+𝜔𝑛
2 

    

⇒C(s)= R(s) 
𝜔𝑛

2

𝑠2+𝜔𝑛
2 

     (22) 

Substitute, R(s)=1/s in  equation 22 
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C(s)= 
𝜔𝑛

2

𝑠(𝑠2+𝜔𝑛
2) 

      (23)

   

By using partial fraction the  equation4 can be written as  

C(s) = 
𝐴

𝑠
 + 

𝐵𝑠+𝐶

𝑠2+𝜔𝑛
2 

      (24) 

After partial fraction  A = 1; B = -1; C= 0  ؞  C(s) = 
1

𝑠
 - 

𝑠

𝑠2+𝜔𝑛
2    (25) 

Apply inverse Laplace transform on both the sides. 

c(t) = 1−cos(ωn t)           (26)
  

So, the unit step response of the second order system when  ζ = 0 will be a continuous time 
signal with constant amplitude and frequency. Since there is no damping with the time, this 
response does not die out with time. This response is known as undamped response as shown in 
the figure. 

 

Case 2: ζ = 1 (critically damped) 

Substitute, ζ = 1 in the transfer function. 

C(s)/R(s)= 
𝜔𝑛

2

𝑠2+2ζ𝜔𝑛s+𝜔𝑛
2 

 = 
𝜔𝑛

2

𝑠2+2𝜔𝑛s+𝜔𝑛
2 

 

    ⇒C(s) = R(s)  
𝜔𝑛

2

[s + 𝜔𝑛]²  
      (27)

       

Substitute, R(s)=1/s in  equation 27 

C(s) = 
𝜔𝑛

2

s[s + 𝜔𝑛]²  
                        (28)

  

Do partial fractions of Equation 28 
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C(s)= 
𝜔𝑛

2

s[s + 𝜔𝑛]²  
        = 

𝑨
s 

      + 
𝑩

s + 𝜔𝑛  
      + 

𝑪
[s + 𝜔𝑛]²  

                           (29) 

After simplifying, you will get the values of A, B and C as 1, −1 and and−ωn respectively. 
Substitute these values in the above partial fraction expansion of C(s). 

C(s)= 
𝟏
s 

 + 
−𝟏

s + 𝜔𝑛  
 + 

−𝜔𝑛
[s + 𝜔𝑛]²  

                         (30) 

Apply inverse Laplace transform on both the sides of Eqs 30 

c(t)=(1−𝑒−ωnt – ωn t𝑒−ωnt) = 1 - 𝑒−ωnt(1 +  ωn t )                                  (31) 

So, the unit step response of the second order system will try to reach the step input in steady 
state. 

 

Case 3: 0 < ζ < 1 (underdamped system) 
 

From Equation (21)    C(s)  = 
𝜔𝑛

2

𝑠2+2ζ𝜔𝑛s+𝜔𝑛
2 

 R(s)       

 Substitute, R(s)=1/s , Hence        C(s)  = 
𝜔𝑛

2

𝑠(𝑠2+2ζ𝜔𝑛s+𝜔𝑛
2) 

            

Putting    𝑠2 + 2ζ𝜔𝑛s + 𝜔𝑛
2 = [s +  ζ𝜔𝑛]2 +  𝜔𝑛

2(1 − ζ2), we get        

C(s)  = 
1

𝑠
.

𝜔𝑛
2

[s + ζ𝜔𝑛]2+ 𝜔𝑛
2 (1−ζ2) 

                                                (32) 

Put 𝜔𝑛
2(1 − ζ2) = 𝜔𝑑

2  and by doing partial fractions of Equation 32 

C(s) = 
𝐴

𝑠
 + 

𝐵𝑠+𝐶
[s + ζ𝜔𝑛]2+𝜔𝑑

2  
                                                                                                         (33)  

After partial fractions we get 

A= 1 

B= -1 

C = -2ζ𝜔𝑛 

Putting the values of A, B,C in Equation 33, we have 



13 
S  K D A V GOVERNMENT POLYTECHNIC, ROURKELA  ELECTRICAL DEPARTMENT 

C(s) = 
1

𝑠
 - 

𝑠+2ζ𝜔𝑛

[s + ζ𝜔𝑛]2− 𝜔𝑑
2  

 =    
1

𝑠
 - 

𝑠+ζ𝜔𝑛

[s + ζ𝜔𝑛]2+ 𝜔𝑑
2  

 - 
ζ𝜔𝑛

[s + ζ𝜔𝑛]2+𝜔𝑑
2  

  

   =   
1

𝑠
 - 

𝑠+ζ𝜔𝑛

[s + ζ𝜔𝑛]2+ 𝜔𝑑
2  

 - 
𝜁

√1−𝜁²
 

𝜔𝑛√1−𝜁²

[s + ζ𝜔𝑛]2+ 𝜔𝑑
2  

   =     
1

𝑠
 - 

𝑠+ζ𝜔𝑛

[s + ζ𝜔𝑛]2+ 𝜔𝑑
2  

 - 
𝜁

√1−𝜁²
 

𝜔𝑑

[s + ζ𝜔𝑛]2+ 𝜔𝑑
2     (34) 

  Taking inverse laplace transform of Equation 34 

C(t) = 1 -  𝑒−ζωnt Cos (ωd𝐭) - 
𝜁

√1−𝜁²
𝑒−ζωnt Sin (ωd𝐭) 

       = 1 - 
𝑒−ζωnt

√1−𝜁²
 [√1 − 𝜁²Cos (ωd𝐭) - ζ Sin (ωd𝐭)]                (35) 

 

Now putting       ζ = Cos ф ;  √1 − 𝜁² = Sin ф  Since  ф =  tan-1 
√1−𝜁²

ζ 
 , hence equation 35 

becomes 

C(t) = 1 - 
𝑒−ζωnt

√1−𝜁²
 [Sin ф  Cos (ωd𝐭) - Cos ф Sin (ωd𝐭)] 

        =  1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝐭 +  ф)        (36) 

Equation (36) represents the solution for 0 < ζ < 1 and it is represented in figure as given below. 

 

 

Case 4: ζ > 1 

We can modify the denominator term of the second order transfer function as follows − 

𝑠2 + 2ζ𝜔𝑛s + 𝜔𝑛
2 = [s +  ζ𝜔𝑛]2 −  𝜔𝑛

2(ζ2 − 1) 

Hence from equation (32) 

C(s)  = 
1

𝑠
.

𝜔𝑛
2

[s + ζ𝜔𝑛]2− 𝜔𝑛
2 (ζ2−1) 

 = 
1

𝑠
.

𝜔𝑛
2

(s + ζ𝜔𝑛+𝜔𝑛√𝜁²−1) (s + ζ𝜔𝑛−𝜔𝑛√𝜁²−1)
                                                            (37) 

by doing partial fractions of Equation 37 
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C(s)  = = 
𝐴

𝑠
+ 

𝐵
(s + ζ𝜔𝑛+𝜔𝑛√𝜁²−1) 

+ 
𝐶

(s + ζ𝜔𝑛−𝜔𝑛√𝜁²−1) 
      (38) 

After simplifying, you will get the values of  

A =1 
 

B = 
1

2
 
𝜁−√𝜁²−1)

√𝜁²−1)
 

C = -  
1

2
 
𝜁+√𝜁²−1)

√𝜁²−1)
 

 
Substitute the value of A, B, C in equation (38) 

 

C(s)  = = 
1

𝑠
+  

1

2
 
𝜁−√𝜁²−1)

√𝜁²−1)

1
(s + ζ𝜔𝑛+𝜔𝑛√𝜁²−1) 

− 
1

2
 
𝜁+√𝜁²−1)

√𝜁²−1)

1
(s + ζ𝜔𝑛−𝜔𝑛√𝜁²−1) 

         (39) 

 
 

Apply inverse Laplace transform of equation (29) we have  

       (40) 

Equation (40) represents the solution for ζ > 1 and it is represented in figure as given below. 
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Time Domain Specifications 

Let us discuss the time domain specifications of the second order system. The step response of 
the second order system for the under damped case is shown in the following figure. 

 

All the time domain specifications are represented in this figure. The respse up to the settling 
time is known as transient response and the response after the settling time is known as steady 
state response. 

1. Delay Time 
It is the time required for the response to reach 50% of its final value in first attempt. It is 
denoted by td. 

Consider the step response of the second order system for t ≥ 0, when ‘ζ’ lies between zero and 

one. From equation (36) 

 c(t) = 1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝐭 +  ф) 

The final value of the step response is one. 

Therefore, at t = td, the value of the step response will be 0.5. Substitute these values in the 
above equation. 
 

c(td) = 0.5 = 1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝑡𝑑 +  ф) 

⇒
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝑡𝑑 +  ф)  = 0.5 

By using linear approximation, you will get the delay time td as 

td =(1+0.7ζ)/ωn      (40) 
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2. Rise Time 

It is the time required for the response to rise from 10% to 90% of the final value for 
overdamped system and 0% to 100% of its final value for the under-damped systems. Rise 
time is denoted by tr. 

At t = tr, c(t) = 1 

Hence  from equation (36) 

c(t) = 1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝐭 +  ф) 

c(tr) =1 = 1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝑡𝑟 +  ф) 

⇒ 𝑒−ζωnt

√1−𝜁²
 sin (ωd𝑡𝑟 +  ф) = 0 

⇒sin(ωd tr + ф)=0 

⇒ ωd tr + ф =π 

⇒  tr = (π −ф)/ωd          (41) 

From above equation, we can conclude that the rise time tr and the damped frequency ωd are 
inversely proportional to each other. 

3. Peak Time 
It is the time required for the response to reach the peak value for the first time. It is denoted 
by tp. 

We know the step response of second order system for under-damped case is (from equation 
36) 

c(t) = 1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝐭 +  ф) 

At t = tp, the first derivate of the response is zero. Hence 
 
𝑑𝑐(𝑡𝑝)

𝑑𝑡
 =0  

⇒ 0 – 
𝑒−ζωn𝑡𝑝(−ζωn)𝑠𝑖𝑛(ωd𝑡𝑝+ ф)

√1−𝜁²
 - 

𝑒−ζωn𝑡𝑝ωdcos(ωd𝑡𝑝+ ф)

√1−𝜁²
 = 0 

⇒  
𝑒−ζωn𝑡𝑝(−ζωn)𝑠𝑖𝑛(ωd𝑡𝑝+ ф)

√1−𝜁²
 + 

𝑒−ζωn𝑡𝑝ωdcos(ωd𝑡𝑝+ ф)

√1−𝜁²
 = 0 

⇒ ζωn𝑠𝑖𝑛(ωd𝑡𝑝 +  ф) = ωdcos(ωd𝑡𝑝 +  ф) 
⇒ tan (ωd𝑡𝑝 +  ф) = ωd/ ζωn 

 By putting ωd =  ωn√1 − 𝜁²  and ф =  tan-1 
√1−𝜁²

ζ 
 

tan (ωn√1 − 𝜁²𝑡𝑝 +  ф) = 
ωn√1−𝜁²

ζωn
 = tan ф 

or ωn√1 − 𝜁²𝑡𝑝 +  ф = nπ + ф 

for n = 1   
 
𝑡𝑝 =  

𝜋

ωn√1−𝜁²
                                                                        (42) 
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4. Peak Overshoot 

Peak overshoot Mp is defined as the deviation of the response at peak time from the final value 
of response. It is also called the maximum overshoot. 

Mathematically, we can write it as 

Mp=c(tp)−c(∞) 

Where, 

c(tp) is the peak value of the response. 

c(∞) is the final (steady state) value of the response. 

From equation (36)  c(t) = 1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝐭 +  ф) 

Put t = tp = 
𝜋

ωn√1−𝜁²
     and    ωd = ωn√1 − 𝜁² 

 - c(tp) = 1 ؞ 
𝑒−ζωn𝑡𝑝

√1−𝜁²
 sin (ωn√1 − 𝜁²𝑡𝑝 +  ф) 

    = 1 - 
𝑒

−ζωn
𝜋

ωn√1−𝜁²

√1−𝜁²
 sin (ωn√1 − 𝜁²

𝜋

ωn√1−𝜁²
+  ф) 

  = 1 - 
𝑒

−
𝜁𝜋

√1−𝜁²

√1−𝜁²
 sin (𝜋 +  ф) = 1 + 

𝑒
−

𝜁𝜋

√1−𝜁²

√1−𝜁²
 sin  ф 

  = 1 + 
𝑒

−
𝜁𝜋

√1−𝜁²

√1−𝜁²
 √1 − 𝜁² since sinф = √1 − 𝜁² 

c(tp) = 1 + 𝑒 ؞
−

𝜁𝜋

√1−𝜁² 

 = MP % ؞
c(tp)−c(∞)

c(∞)
  x 100 = 

1 + 𝑒
−

𝜁𝜋

√1−𝜁²− 1

1
 x 100 

Or  % MP =  𝑒
−

𝜁𝜋

√1−𝜁² x 100         (43) 

  5. Settling time 

It is the time required for the response to reach the steady state and stay within the specified 
tolerance bands around the final value. In general, the tolerance bands are 2% and 5%. The 

settling time is denoted by ts. 
As seen from equation 26 the time constant of the exponential envelope is T= 1/ ζωn.  

The settling time of the second order system for 2% tolerance band is appx. Four times the time 

constant T i.e. 

ts = 4/ ζωn =4T 

The settling time for 5% tolerance band is - 
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ts = 3/ ζωn = 3T 

 
Steady State Error 
 
It indicate the error between the actual output and the desired output as t tends to infinity i.e. 
 
ess = lim

𝑡→0
[𝑟(𝑡) −  𝑐(𝑡)]= lim

𝑡→0
𝑟(𝑡) - lim

𝑡→0
 𝑐(𝑡)  

 

       = lim
𝑡→0

1 - lim
𝑡→0

 [1 - 
𝑒−ζωnt

√1−𝜁²
 sin (ωd𝐭 +  ф)] = 1-1 = 0 

Thus second order system has zero steady state error to unit step input. 

Example 
Let us now find the time domain specifications of a control system having the closed loop 
transfer function 4s2 +2s+4 when the unit step signal is applied as an input to this control 
system. 

We know that the standard form of the transfer function of the second order closed loop control 
system as 

C(s)/R(s) = ωn
2 /s2+2ζωns+ωn

2  

 

By equating these two transfer functions, we will get the un-damped natural frequency ωn as 2 
rad/sec and the damping ratio ζ as 0.5. 
We know the formula for damped frequency ωd as 

ωd = ωn√1 − ζ 2 

Substitute ωn and δ values in the above formula. 
 

⇒ ωd =2√1 − 0.52 

⇒ ωd =1.732rad/sec 

Substitute, δ value in following relation 
Ф = cos-1 ζ 

⇒ф = cos-1 (0.5) = π/3rad 

Substitute the above necessary values in the formula of each time domain specification and 
simplify in order to get the values of time domain specifications for given transfer function. 
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Steady State Error Analysis 

 
The deviation of the output of control system from desired response during steady state is 

known as steady state error. It is represented as ess. We can find steady state error using the 
final value theorem as follows. 

 ess =limt→∞ e(t) = lims→0 sE(s) 

Where, 

E(s) is the Laplace transform of the error signal, e(t) 

Let us discuss how to find steady state errors for unity feedback and non-unity feedback control 
systems one by one. 

Steady State Errors for Unity Feedback Systems 

Consider the following block diagram of closed loop control system, which is having unity 
negative feedback.  

 

Where, 

 R(s) is the Laplace transform of the reference Input signal r(t) 
 C(s) is the Laplace transform of the output signal c(t) 

We know the transfer function of the unity negative feedback closed loop control system as 

C(s)/R(s) = G(s)/1+G(s) 

⇒C(s) = R(s)G(s)/1+G(s) 

The output of the summing point is - 

E(s) = R(s)−B(s)= R(s) – C(s)H(s) = R(s) – E(s)G(s)H(s) 

⇒E(s)[1+ G(s)H(s)] = R(s) 

⇒E(s)=R(s)/ [1+ G(s)H(s)] 

For H(s) = 1    E(s)=R(s)/ [1+ G(s)] 

  

Substitute E(s) value in the steady state error formula 
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ess = lim𝑠→0  sR(s)/1 + G(s) 

 

The following table shows the steady state errors and the error constants for standard input 
signals like unit step, unit ramp & unit parabolic signals. 

Input signal Steady state error ess Error constant 

unit step signal 1/1+kp Kp = lim𝑠→0G(s) 

unit ramp signal 1/Kv Kv = lim𝑠→0sG(s) 

unit parabolic signal 1/Ka Ka = lim𝑠→0s2G(s) 

 
Where Kp, Kv and Ka are position error constant, velocity error constant and acceleration error 
constant respectively. 

Note –  

1. If any of the above input signals has the amplitude other than unity, then multiply 
corresponding steady state error with that amplitude. 

2. We can’t define the steady state error for the unit impulse signal because, it exists only at 

origin. So, we can’t compare the impulse response with the unit impulse input as t denotes 
infinity. 

Example 
Let us find the steady state error for an input signal r(t)=(5+2t+t2/2)u(t) of unity negative 
feedback control system with  G(s)=5(s+4)/s2(s+1)(s+20) 

The given input signal is a combination of three signals step, ramp and parabolic. The following 
table shows the error constants and steady state error values for these three signals. 

Input signal Error constant Steady state error 

r1(t)=5u(t) Kp=lim𝑠→0 G(s)=∞ ess1=5/1+kp = 0 

r2 (t)=2tu(t) Kv=lim𝑠→0sG(s)=∞ ess2 =2/Kv=0 

r3 (t)=t2/2 u(t) Ka=lim𝑠→0 s² G(s)=1 ess3 =1/ka=1 

We will get the overall steady state error, by adding the above three steady state errors. 

ess= ess1+ ess2+ ess3 

⇒ ess = 0+0+1=1 
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Therefore, we got the steady state error ess as 1 for this example. 
 
Steady state error for different types of input for Type-0, Type- 1and Type-2 systems. 

 

 
  

Effect of adding poles and zero to transfer function 
 

Effect of addition of pole to transfer function: 

1)      As the pole moves towards the origin in s plane, the rise time increases and the maximum 
overshoot decreases, as far as the overshoot is concerned, adding a pole to the closed loop 
transfer function has just the opposite effect to that of adding a pole to forward path transfer 
function as discussed in the last article. 

2)      The addition of left half pole tends to slow down the system response. 

3)      The effect of addition of pole becomes more pronounced as pole location drifts away from 
imaginary axis. 

4)      Addition of right half pole will make overall system response to be an unstable one. 

Effect of addition of zero to transfer function: 

1)      Makes the system overall response faster. 

2)      Rise time, peak time, decreases but overshoot increases. 

3)      Addition of right half zeros means system response slower and system exhibits inverse 
response. Such systems are said to be non-minimum phase systems. 

 

 

 

 

https://en.wikipedia.org/wiki/Rise_time
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CHAPTER III 

Analysis of stability by Root Locus Technique 
 

What is Stability? 

A system is said to be stable, if its output is under control. Otherwise, it is said to be 
unstable. A stable system produces a bounded output for a given bounded input. 

The following figure shows the response of a stable system. 

 

This is the response of first order control system for unit step input. This response has the 
values between 0 and 1. So, it is bounded output. We know that the unit step signal has the 
value of one for all positive values of t including zero. So, it is bounded input. Therefore, the 
first order control system is stable since both the input and the output are bounded. 

Types of Systems based on Stability 

We can classify the systems based on stability as follows. 

 Absolutely stable system 

 Conditionally stable system 

 Marginally stable system 

Absolutely Stable System 

If the system is stable for all the range of system component values, then it is known as 
the absolutely stable system. The open loop control system is absolutely stable if all the 
poles of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed 
loop control system is absolutely stable if all the poles of the closed loop transfer function 
present in the left half of the ‘s’ plane. 

Conditionally Stable System 

If the system is stable for a certain range of system component values, then it is known 
as conditionally stable system. 



Marginally Stable System 

If the system is stable by producing an output signal with constant amplitude and constant 
frequency of oscillations for bounded input, then it is known as marginally stable system. 
The open loop control system is marginally stable if any two poles of the open loop transfer 
function is present on the imaginary axis. Similarly, the closed loop control system is 
marginally stable if any two poles of the closed loop transfer function is present on the 
imaginary axis. 

Condition for stability 
Let us consider a transfer function of a closed loop system: 

𝐶(𝑠)

𝑅(𝑠)
 = 

𝑎0 𝑠𝑚+𝑎1 𝑠𝑚−1+𝑎2𝑠𝑚−2+...+𝑎𝑚−1 𝑠1 +𝑎𝑚𝑠0

𝑎0 𝑠𝑛+𝑎1 𝑠𝑛−1+𝑎2 𝑠𝑛−2+...+𝑎𝑛−1 𝑠1 +𝑎𝑛 𝑠0   ; 

Here the characteristics Equation : 𝑎0 𝑠𝑛+𝑎1 𝑠𝑛−1+𝑎2 𝑠𝑛−2+. . . +𝑎𝑛−1 𝑠1 +𝑎𝑛 𝑠0 = 0 

Necessary and sufficient conditions for stability: 

1. All the coefficients of the ch. Equation should have same sign. 

2. There should be no missing term. 

 

Routh-Hurwitz Stability Criterion 

This criterion is based on ordering the coefficients of the characteristics equation into an 
array called Routh’s array. The Routh’s array is formed as follows. 

Follow this procedure for forming the Routh table. 

 Fill the first two rows of the Routh array with the coefficients of the characteristic 
polynomial as mentioned in the table. Start with the coefficient of sn and continue up 
to the coefficient of s0. 

 Fill the remaining rows of the Routh array with the elements as mentioned in the 
table . Continue this process till you get the first column element of row s0 is an. 
Here, an is the coefficient of  s0  in the characteristic polynomial. 

Note − If any row elements of the Routh table have some common factor, then you can 

divide the row elements with that factor for the simplification will be easy. 

 Consider the characteristic equation of the order ‘n’ is - 

a0 sn+a1 sn-1+a2 sn-2+...+an-1 s1 +an s0 =0 

 
sn 

a0 a2 a4 a6 ... ... 

sn-1 a1 a3 a5 a7 ... ... 

sn-2 b1=(a1a2− 
a3a0)/a1 

b2=(a1a4−a5a0

)/a1 
b3=(a1a6−a7

a0)/a1 
... ... ... 

sn-3 c1=(b1a3−b2

a1)/b1 
c2=(b1a5−b3a

1)/b1 
⋮⋮    



⋮⋮ ⋮⋮ ⋮⋮ ⋮⋮    

S1 ⋮⋮ ⋮⋮     

S0 an      

 

Sufficient Condition for Routh-Hurwitz Stability 

The sufficient condition is that all the elements of the first column of the Routh array should 
have the same sign. This means that all the elements of the first column of the Routh array 
should be either positive or negative. 

 

Example 

Let us find the stability of the control system having characteristic equation, 

S4+3s3+3s2+2s+1=0 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the characteristic polynomial, S4+3s3+3s2+2s+1 are positive. So, the 
control system satisfies the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 

S4 1 3 1 

S3 3 2  

S2 (3×3)−(2×1)

3
 = 7/3 

(3×1)−(0×1)

3
 =1  

S1 (7/3×2)−(1×3)

7/3
 =5/7   

S0 1   

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

All the elements of the first column of the Routh array are positive. There is no sign change 
in the first column of the Routh array. So, the control system is stable. 

Special Cases of Routh Array 

The two special cases are − 

 The first element of any row of the Routh array is zero. 

 All the elements of any row of the Routh array are zero. 

Let us now discuss how to overcome the difficulty in these two cases, one by one. 

First Element of any row of the Routh array is zero 
If any row of the Routh array contains only the first element as zero and at least one of the 
remaining elements have non-zero value, then replace the first element with a small positive 



integer, ϵ. And then continue the process of completing the Routh table. Now, find the 
number of sign changes in the first column of the Routh table by substituting ϵ tends to zero. 

Example 

Let us find the stability of the control system having characteristic equation, 

S4+2s3+s2+2s+1=0 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the characteristic polynomial, S4+2s3+s2+2s+1are positive. So, the 
control system satisfied the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 

S4 1 1 1 

S3 
2 2  

S2 0 1  

S1    

S0    

Special case (i) − Only the first element of row s2 is zero. So, replace it by ϵ and continue 
the process of completing the Routh table 
. 

s4  1 1 1 

s3 1 1  

s2 ϵ 1  

s1 [(ϵ×1)−(1×1])/ϵ = (ϵ−1)/ϵ   

s0 1   

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

As ϵ tends to zero, the Routh table becomes like this. 

s4 1 1 1 

s3 1 1  

s2 0 1  



s1 -∞   

s0 1   

There are two sign changes in the first column of Routh table. Hence, the control system is 
unstable. 

All the Elements of any row of the Routh array are zero 

In this case, follow these two steps − 

 Write the auxilary equation, A(s) of the row, which is just above the row of zeros. 

 Differentiate the auxiliary equation, A(s) with respect to s. Fill the row of zeros with 
these coefficients. 

Example 

Let us find the stability of the control system having characteristic equation, 

S5+3s4+s3+3s2+s+3=0 

Step 1 − Verify the necessary condition for the Routh-Hurwitz stability. 

All the coefficients of the given characteristic polynomial are positive. So, the control 
system satisfied the necessary condition. 

Step 2 − Form the Routh array for the given characteristic polynomial. 

s5 1 1 1 

s4 3 1 3 1 3 1 

s3  0 0  

s2    

s1    

s0    

The row s4 elements have the common factor of 3. So, all these elements are divided by 3. 
Special case (ii) − All the elements of row s3 are zero. So, write the auxiliary equation, A(s) 
of the row s4. 
A(s)=s4+s2+1 

Differentiate the above equation with respect to s. 

dA(s)

𝑑𝑠
 = 4s3+2s 

Place these coefficients in row s3. 

s5 1 1 1 



s4 1 1 1 

s3 4 2  

s2 0.5 1  

s1 −3   

s0 1   

Step 3 − Verify the sufficient condition for the Routh-Hurwitz stability. 

There are two sign changes in the first column of Routh table. Hence, the control system is 
unstable. 

In the Routh-Hurwitz stability criterion, we can know whether the closed loop poles are in 
on left half of the ‘s’ plane or on the right half of the ‘s’ plane or on an imaginary axis. So, 

we can’t find the nature of the control system. To overcome this limitation, there is a 

technique known as the root locus. We will discuss this technique in the next two chapters. 

 

Root Locus 
 

In the root locus diagram, we can observe the path of the closed loop poles. Hence, we can 
identify the nature of the control system. In this technique, we will use an open loop transfer 
function to know the stability of the closed loop control system. 

The Root locus is the locus of the roots of the characteristic equation by varying system gain 
K from zero to infinity. 

Angle Condition and Magnitude Condition 

The points on the root locus branches satisfy the angle condition. So, the angle condition is 
used to know whether the point exist on root locus branch or not. We can find the value of K 
for the points on the root locus branches by using magnitude condition. So, we can use the 
magnitude condition for the points, and this satisfies the angle condition. 

Characteristic equation of closed loop control system is 

1+G(s)H(s)=0 

⇒G(s)H(s) = −1 + j0 

The phase angle of G(s)H(s) is 
∠G(s)H(s)=tan-1  0/(−1)=(2n+1)π 

The angle condition is the point at which the angle of the open loop transfer function is an 
odd multiple of 1800. 

Magnitude of G(s)H(s) is - 

|G(s)H(s)| =√(−1)² + 0² =1 



The magnitude condition is that the point (which satisfied the angle condition) at which the 
magnitude of the open loop transfer function is one. 

Rules for Construction of Root Locus 

Follow these rules for constructing a root locus. 

Rule 1 − Locate the open loop poles and zeros in the ‘s’ plane. 

Rule 2 − Find the number of root locus branches. 

We know that the root locus branches start at the open loop poles and end either at open 
loop zeros or at ∞. So, the number of root locus branches N is equal to the number of finite 
open loop poles P or the number of finite open loop zeros Z, whichever is greater. 

Mathematically, we can write the number of root locus branches N as 

N=P if P≥Z 
N=Z if P<Z 

Rule 3 − Identify and draw the real axis root locus branches. 

A point or segment on the real axis lies on the root locus if the sum of open loop poles and 
open loop zeros to the right of this point or segment is odd. 

Rule 4 − Find the centroid and the angle of asymptotes. 

 Asymptotes give the direction of these root locus branches.  
Number of  Asymptotes= P -Z 
The intersection point of asymptotes on the real axis is known as centroid. 

We can calculate the centroid 𝝈𝑨 by using this formula, 

𝝈𝑨 = 
∑Real part of finite open loop poles−∑Real part of finite open loop zeros

P−Z
 

The formula for the angle of asymptotes  is 

ФA = 
(2q+1)180

P−Z 
 

Where, 

q=0,1,2,....,(P−Z−1)   

Rule 5 − Find the intersection points of root locus branches with an imaginary axis. 

We can calculate the point at which the root locus branch intersects the imaginary axis and 
the value of K at that point by using the Routh array method  

Rule 6 − Find Break-away and Break-in points. 

 If there exists a real axis root locus branch between two open loop poles, then there 
will be a break-away point in between these two open loop poles. 

 If there exists a real axis root locus branch between two open loop zeros, then there 
will be a break-in point in between these two open loop zeros. 

Note − Break-away and break-in points exist only on the real axis root locus branches. 

Follow these steps to find break-away and break-in points. 

 Write K  in terms of s from the characteristic equation 1+G(s)H(s)=0 



 Differentiate K with respect to s and make it equal to zero. Substitute these values 
of s in the above equation. 

 The values of s for which the K value is positive are the break points. 

Rule 7 − Find the angle of departure and the angle of arrival. 

The Angle of departure and the angle of arrival can be calculated at complex conjugate open 
loop poles and complex conjugate open loop zeros respectively. 

The formula for the angle of departure ϕd is 
Φd = 180 –sum of the angles of vectors drawn to this pole to other poles + sum of the angles 
of vectors drawn to this pole to zeros 

The formula for the angle of arrival ϕa is 

Φa = 180 –sum of the angles of vectors drawn to this zero to other zeros + sum of the angles 
of vectors drawn to this zero to poles 

Example 
 
Let us now draw the root locus of the control system having open loop transfer function  

G(s)H(s)= 
𝑘

s(s+1)(s+5)
 

 
Step 1 − The given open loop transfer function has three poles at s=0, s=−1 and s=−5. It 
doesn’t have any zero. Therefore, the number of root locus branches is equal to the number 
of poles of the open loop transfer function. 
 
   N=P=3 

 

The three poles are located are shown in the above figure. The line segment 
between s=−1 and s=0 is one branch of root locus on real axis. And the other branch of the 
root locus on the real axis is the line segment to the left of s=−5 i.e in between -5 and ∞. 

Step 2 − We will get the values of the centroid and the angle of asymptotes by using the 

given formulae. 

Centroid 𝝈𝑨 = 
0−1−5

3−0
=  −2 

The angle of asymptotes ФA = 
(2q+1)180

P−Z 
  = 

(2q+1)180

3−0 
 for q= 0, 1, 2 angle of asymptotes 

are θ=60⁰,180⁰ and 300⁰ 

The centroid and three asymptotes are shown in the following figure. 



 

Step 3 − Since two asymptotes have the angles of 60ᵒ and 300ᵒ, two root locus branches 
intersect the imaginary axis. By using the Routh array method and special case(ii), the 
intersects of root locus branches to the imaginary axis can be found out as below 
 
The characteristics equation of the given TF is 1+G(s)H(s)= 0 

      Or 1+ 
𝑘

s(s+1)(s+5)
 = 0 

                                                                        Or s3+6s2+5s+K = 0 
Routh array 
 

s3 1 5 

s2 6 k 

s1 30 − 𝑘

6
 

0 

s0 k  

For system stability the coefficient of Routh’s array having positive and non zero value 
hence: 
K > 0 
30−𝑘

6
> 0 or  k< 30 

The range of K for which the system became stable is 0< k <30 
At k = 30, the system auxiliary equation is  
6s2 + 30= 0 
Or s = ± 𝑗√5 



Hence the root locus intersect the imaginary axis at  ± 𝑗√5 
     
Step 4 − There will be one break-away point on the real axis root locus branch between the 
poles s=−1 and s=0. By following the procedure given for the calculation of break-away 
point,  
The characteristics equation   s3+6s2+5s+K = 0 
    Or  K= -(s3+6s2+5s) 
 
𝑑𝑘

𝑑𝑠
 = 0 

 
Or 3 s2+ 12s+5=0 
The roots of s= -0.473, -3.52 
Since breakaway point must lie between 0 and -1, it is clear that  s=−0.473is actual 
breakaway point. 

The root locus diagram for the given control system is shown in the following figure. 

 

Example :- A feedback control system has open-loop transfer function  

 
Draw root locus as K is varied from 0 to ∞ . 
 
Solution: 
Step-1 :- Find OL poles and OL zeros from the OLTF 
 
OL poles are S=0,-3, (-1+j1) and (-1-j1) 
There are no finite OL zeros. 
Mark OL pole with cross and OL zero with circle in S-plane as shown. 



 

 
 

Step-2 Find the parts of the real axis at which root locus lies. 

A point on real axis lies on root locus if the number of  OL poles+OL zeros on the real axis to 
the right of the point is odd.Hence the Root locus exist between s=0 and s= -3 in the real axis. 

 
Step-3 Number of root locus branches N =  P= 4 
Step-4 Find number of asymptotes: 

Number of asymptotes = P - Z = 4 (where P,Z = nos of  open loop pole and zero) 

 Step-5Calculation for cetroid 
 

 𝝈𝑨 = 
∑Real part of finite open loop poles−∑Real part of finite open loop zeros

P−Z
 

  
Step-6 Calculation for asymptotic angle: 
 

ФA = 
(2q+1)180

P−Z 
  For q=0;  

      For q=1;   
 
 

     For q=2; 
 



                          For q=3; 
So, from steps 2,3 and 4 , four asymptotes cut the real axis at -1.25 and make angles  450, 
1350, 2250 and 3150 , as shown below. 

 
 
 

 
 

 

 

 

Step-7: Find 
the breakaway 
points (points at which two or more root locus branches meet) 
 
Breakaway points are the solutions of  (dKa/ds)=0 

The characteristic equation will be       S(S+3)(S2+2S+2)+Ka =0 

From the characteristic equation,  
Ka = -S(S+3)(S2+2S+2) = -(S4+5S3+8S2+6S) 

 
We get, S = -2.3 ,  (-0.725±j0.365) 
 
Not all values obtained as solutions of (dKa/ds)=0 need to be necessarily the breakaway 
points. Out of the obtained s values only those values of S which satisfy angle condition are 
the actual breakaway points. 
 
On checking angle condition we find that  (-0.725±j0.365) do not satisfy it. Therefore, only 
S= -2.3 is the only breakaway point. So, the real axis from 0 to -3 contains root locus which 
breakdown at -2.3  as shown. 



 
 

Step-8 :- Find angles of departure  as there is a presence of  pole in complex plane (angle 
which a root locus branch starting from an open loop pole, makes with a line parallel to the 
asymptotic line. 
The formula for the angle of departure ϕd is 
Φd = 180 –sum of the angles of vectors drawn to this pole to other poles + sum of the angles 
of vectors drawn to this pole to zeros 

Or Φd = 180 – ( 900+1350+26.60 ) = -71.60 
 
 So, root locus branch starts from (-1+j1) at an angle -71.60 . Since root locus is always 
mirror image about real axis , therefore, root locus starts from  (-1-j1) at   +71.60. 
 

 
 

Step-9 :- Find the points at which root locus branches intersect jw axis. 
The characteristic equation will be       S(S+3)(S2+2S+2)+Ka =0 

Or   S4+5S3+8S2+6S+ Ka=0, Make rouths array; 



S4 1 8 Ka 

S3 5 6  

S2 (5×8)−(6×1)

5
 = 6.8 Ka  

S1 (6.8 × 6) − (Ka × 5)

6.8
  

  

S0 Ka   

 
For the system to be stable all the coefficient of the first column of the Routh’s array having 

positive and non zero value. Hence for system stability 
Ka> 0 

(6.8×6)−(Ka×5)

6.8
 >0 

Or 0 < Ka <8.16 
For Ka = 8.16 the Auxiliary equation is 6.8s2+ 8.16 = 0 

Or s2= - 1.2 
Or s = ± j1.1 

The points of intersection comes out to be +j1.1 and –j1.1 
The complete root locus is shown below. 

 
0 
 
 

 
 



 

Effects of Adding Open Loop Poles and Zeros on Root Locus 

Effect of addition of open loop pole Effect of addition of open loop zero 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 



 MODULE – IV  
Frequency Response Analysis 

Introduction: 

The response of a system can be partitioned into both the transient response and the steady state 
response. We can find the transient response by using Fourier integrals. The steady state response 
of a system for an input sinusoidal signal is known as the frequency response. In this chapter, 
we will focus only on the steady state response. 

If a sinusoidal signal is applied as an input to a Linear Time-Invariant (LTI) system, then it 
produces the steady state output, which is also a sinusoidal signal. The input and output 
sinusoidal signals have the same frequency, but different amplitudes and phase angles. 

Let the input and output signal be − 

r(t)=Asin(ωt)           (1) 

c(t)=Bsin(ωt+ ф)          (2) 

The open loop transfer function will be − 

G(s)=G(jω) 

We can represent G(jω) in terms of magnitude and phase as shown below. 
G(jω)=|G(jω)|∠G(jω) 

The output signal is 

c(t)=A|G(jω)|sin(ωt+∠G(jω))          (3) 

 The amplitude of the output sinusoidal signal is obtained by multiplying the amplitude of 
the input sinusoidal signal and the magnitude of G(jω) at ω. 

 The phase of the output sinusoidal signal is obtained by adding the phase of the input 
sinusoidal signal and the phase of G(jω) at ω 

Where, 

 A is the amplitude of the input sinusoidal signal. 

 Ω is angular frequency of the input sinusoidal signal. 

We can write, angular frequency ω as shown below. 
ω=2πf 

Here, f is the frequency of the input sinusoidal signal. Similarly, you can follow the same 
procedure for closed loop control system. 

Correlation between time and frequency response: 

The frequency domain specifications are resonant peak, resonant frequency and bandwidth. 

Consider the transfer function of the second order closed loop control system as, 



T(s) = C(s)/R(s)=ωn
2/( s2+2ζωns+ωn

2 ) 

Substitute, s= jω in the above equation. 
T(jω)= ωn

2 /(jω)2+2ζωn(jω)+ ωn
2 

⇒T(jω)= 
𝜔𝑛

2

−𝜔2+2𝑗ζωω𝑛+ω𝑛
2  = 

𝜔𝑛
2

𝜔𝑛
2  

1

(−
𝜔2

𝜔𝑛
2 )+2𝑗𝜁(

ω

ω𝑛
)+1

 

⇒T(jω)=  
1

(1−
𝜔2

𝜔𝑛
2 )+𝑗2𝜁(

ω

ω𝑛
)
            (4)  

Let, 
𝛚

𝛚𝒏
 =u Substitute this value in the above equation. 

T(jω)=  
1

(1−𝑢2)+𝑗2𝜁𝑢
                                               (5) 

Magnitude of T(jω) is - 

M=|T(jω)|= 
1

√(1−𝑢2)
2

+(2𝜁𝑢)
2
    (6) 

Phase of T(jω) is - 

∠T(jω)=−tan−1
2𝜁𝑢

(1−𝑢2)
            (7) 

The steady-state output of the system for a sinusoidal input of unit magnitude and variable 
frequency ω is given by  

     C(t) = 
1

√(1−𝑢2)
2

+(2𝜁𝑢)
2
Sin(ωt- tan-1 

2𝜁𝑢

(1−𝑢2)
 )               (8) 

Resonant Frequency: 
It is the frequency at which the magnitude of the frequency response has peak value for the first 
time. It is denoted by ωr. At ω=ωr the first derivate of the magnitude of T(jω) is zero. 
Differentiate M with respect to u. 

𝑑𝑀

𝑑𝑢
|u=ur  = −

1

2
 

−4(1−𝑢𝑟
2)𝑢𝑟+8𝜁2

𝑢𝑟

[(1−𝑢𝑟
2)2+(2𝜁𝑢𝑟)2]

3/2 = 0  

 
⇒4𝑢𝑟

3 - 4ur +8𝜁2
𝑢𝑟 =0  

⇒ ur  = √1 − 2𝜁2
     (9) 

         i.e,  ωr = ωn√1 − 2𝜁2
                           (10) 

Resonant Peak: 
It is the peak (maximum) value of the magnitude of T(jω). It is denoted by Mr. 
At u=ur, the Magnitude of T(jω) is - 



M=|T(jω)|= 
1

√(1−𝑢2)
2

+(2𝜁𝑢)
2
 

Substitute, ur  = √1 − 2𝜁2 in the above equation, we get 
 

Mr= 
1

2𝜁√1−𝜁2
                 (11) 

The phase angle of T(jω) at resonant frequency ur obtained from equation 7 is 

Фr = -tan-1 [√1 − 2𝜁2 / 𝜁]     (12) 

Resonant peak in frequency response corresponds to the peak overshoot in the time domain 
transient response for certain values of damping ratio 𝜁 . So, the resonant peak and peak 
overshoot are correlated to each other. 

Bandwidth: 
It is the range of frequencies over which, the magnitude of T(jω) drops to 70.7% (0.707) from its 
zero frequency value. 
At ω=0, the value of u will be zero. 
Substitute, u=0 in M, frm equation 6 

M= 
1

√(1−02
)

2
+(2𝜁0)

2
 = 1 

 

Therefore, the magnitude of T(jω) is one at ω=0. 
At 3-dB frequency, the magnitude of T(jω) will be 70.7% of magnitude of T(jω) at ω=0. 

i.e., at ω=ωb, M=0.707(1) =1/√2 

 
From Equation 6:      M =

1

√2
= 

1

√(1−𝑢𝑏
2)2+(2𝜁𝑢𝑏)2

 

 
⇒2 =(1−ub

2)2 +(2 𝜁)2 ub
2 

Let, ub
2 =x 

⇒2 = (1−x)2 +(2 𝜁)2 x ⇒x2 +(4 𝜁 2 −2)x−1=0  



⇒x = 
−(4𝜁2−2)±√(4𝜁2−2)2−4

2
 

Consider only the positive value of x. 

x = 
−(4𝜁2−2)+√(4𝜁2−2)2−4

2
 

or    X = 1 − 2𝜁2√2 −4𝜁2 + 4𝜁4 

Substitute, x= ub
2 =ωb

2/ωn
2 

ωb
2/ωn

2 = 1 − 2𝜁2√2 −4𝜁2 + 4𝜁4 

  ⇒ωb=ωn √1 − 2𝜁2√2 − 4𝜁2 + 4𝜁4
               (13)  

Bandwidth ωb in the frequency response is inversely proportional to the rise time tr in the time 
domain transient response. 
 

Bode Plots 
 

Sinusoidal transfer function is graphically represented by Bode plot for determining the stability 
of the control system. Bode plot is a logarithmic plot and consists of two plots. 

 A plot of the logarithmic (base 10) of magnitude (in decibel) Vs frequency in logarithmic 
scale i.e. log ω. 

 A plot of Phase plot (ф) Vs frequency in logarithmic scale i.e. log ω. 

In both the plots, x-axis represents angular frequency (logarithmic scale). Whereas, y-axis 
represents the magnitude (linear scale) of open loop transfer function in the magnitude plot and 
the phase angle (linear scale) of the open loop transfer function in the phase plot. 

The magnitude of the open loop transfer function in dB (decibel) is - 

M=20log|G(jω)H(jω)|      (1) 

The phase angle of the open loop transfer function in degrees is - 

ϕ=∠G(jω)H(jω)     (2)  

Note − the base of logarithm is 10. 

Basic of Bode Plots 
Let the generalised expression for open-loop transfer function of a system be given by: 

 

 (3) 



 

Put s= jω in equation 3, we get 

 

  (4) 

 

  (5) 

 

Where u= ω/ωn 

From equation 5, the magnitude of G(jω)H(jω) in decibels is given by 

 

 

(6) 

 

 

(7) 

 

 

(8) 

 

(9) 

 



 
 

Procedure for plotting Bode plot: 
Step 1: Rewrite the open loop transfer function in the time constant form as given in equation 4. 
Step 2: Identify the corner frequencies associated with each factor of the transfer function. 
Step 3: After knowing the corner frequencies, draw the asymptotic magnitude plot. This plot 
consists of straight line segments with line slope changing at each corner frequency as follows. 
              (i) + 20 db / decade for a zero and + 20n db/decade for a zero of multiplicity n. 
   (ii) -20db/decade for a pole and - 20n db/decade for a pole of multiplicity n. 
   (iii) + 40db/decade for a complex conjugate zero and + 40n db/decade for a complex  
                    Conjugate zero of multiplicity n. 
   (iv)-40db/decade for a complex conjugate pole and - 40n db/decade for a complex  
                    Conjugate pole of multiplicity n. 
Step 3: Initial slope of Bode plot are calculated as follows. 
             (i) For type zero system draw a line up to first (lowest) corner frequency having 0      
                 db/decade slope.  
            (ii) For type one system dra w a line having slope of -20db/decade up to ω=K. Mark first  
                  (lowest) corner frequency. 
             (ii) For type two system draw a line having slope of -40db/decade up to ω=√K and so on.       
                   Mark first (lowest) corner frequency. 
Step 4: Draw a line up to second corner frequency by adding the slope of next pole or zero to the 
previous slope and so on. 
Step 5: Calculate phase angle for different values of ω from the equation 9 and join all points. 
 

Note − The corner frequency (ω=1/K) is the frequency at which there is a change in the slope of 
the magnitude plot. 

Example 1: Draw the bode plot for unity feedback control system having G(s)= 
1000

(𝑠+100)
. 

Solution: 

Step1: Open-loop transfer function in time constant form is given by 

G(s)H(s)= 
1000

(𝑠+100)
 

   = 
1000

100
(𝑠+100)

100

 = 
10

(1+0.01𝑠)
 (Time constant form) 

Put s= jω                                     G(jω)H(jω)= 
10

(1+𝑗0.01ω)
 

Step 2: Corner frequency ω = 1/0.001 = 100 
Step 3: There is one pole on the real axis hence magnitude plot is a straight line having slope of -
20 db/decade.  

Step 4:  As the system is type zero system so magnitude plot is a straight line parallel to o db 
axis and having magnitude 20log10K= 20log1010= 20db. 

Step 5: phase angle ф = -tan-1 0.01ω. The table shows value of ф when ω varies from 0 to ∞. 



 

 

Example 2: Draw the bode plot for unity feedback control system having  

G(s) = 5(s+2)/s(s+10) 

Put s= jω 
 
               G(jω)= 

 
  
 

 

|G(jω)|∠G(jω) 

 

 

 

 



Magnitude plot: 

Sl. 
No 

Factor Corner 
Frequency 

Slope Asymptotic log magnitude 

1 1

𝑗𝜔
 

None -20 
db/decade 

Straight line of slope -20 db/decade and 
intersecting the 0 dB axis at ω=K=1and extend 

upto first corner frequency 2. 
2 1+0.5 𝑗𝜔 2 +20 

db/decade 
Draw a net slope (-20) + (+20)= 0 db/decade 
from corner frequency 2 to the next corner 
frequency 10. 

3 1

1 + 0.1 𝑗𝜔
 

10 -20 
db/decade 

Draw the net slope of 0+(-20)= -20 db/decade 
from  corner frequency 10 to ∞. 

 Note: Arrange the table in increasing order of corner frequency.  

For different value of ω calculate phase angle ∠G(jω) and join all the points by free hand. 

 

 

Computation of Gain Margin and Phase Margin 

From the Bode plots, we can say whether the control system is stable, marginally stable or 
unstable based on the values of these parameters. 

 Gain cross over frequency and phase cross over frequency 

 Gain margin and phase margin 

Phase Cross over Frequency 
The frequency at which the phase plot is having the phase of -1800 is known as phase cross over 
frequency. It is denoted by ωpc. The unit of phase cross over frequency is rad/sec. 



Gain Cross over Frequency 
The frequency at which the magnitude plot is having the magnitude of zero dB is known as gain 
cross over frequency. It is denoted by ωgc. The unit of gain cross over frequency is rad/sec. 

The stability of the control system based on the relation between the phase cross over frequency 
and the gain cross over frequency is listed below. 

 If the phase cross over frequency ωpc is greater than the gain cross over frequency ωgc, 
then the control system is stable. 

 If the phase cross over frequency ωpc is equal to the gain cross over frequency ωgc, then 
the control system is marginally stable. 

 If the phase cross over frequency ωpc is less than the gain cross over frequency ωgc, then 
the control system is unstable. 
 

 

ωpc >ωgc, GM & PM are +ve              ωpc <ωgc, GM & PM are –ve  ωpc =ωgc, GM= PM=0 
 Stable System                           Un-stable System            marginally stable system 

 

Gain Margin 
Gain margin GM is defined as the margin in gain allowable by which gain can be increased till 
system reaches on the verge of instability. It is equal to negative of the magnitude in dB at phase 
cross over frequency. Mathematically   

GM=20log10 (
1

|𝐺(𝑗𝜔)|𝜔=𝜔𝑝𝑐

)= - 20log10 |𝐺(𝑗𝜔)|𝜔=𝜔𝑝𝑐
 

The unit of gain margin (GM) is dB. 

Phase Margin 
Phase margin can be defined as the amount of additional phase lag which can be introduced in 
the system till the system reaches on the verge of instability. The formula for phase margin PM is 

PM=[∠𝐺(𝑗𝜔)|𝜔=𝜔𝑔𝑐
] – (-180⁰) 

= 180ᵒ+ [∠𝐺(𝑗𝜔)|𝜔=𝜔𝑔𝑐
] 

 The unit of phase margin is degrees. 



The stability of the control system based on the relation between gain margin and phase margin 
is listed below. 

 If both the gain margin GM and the phase margin PM are positive, then the control system 
is stable. 

 If both the gain margin GM and the phase margin PM are equal to zero, then the control 
system is marginally stable. 

 If the gain margin GM and / or the phase margin PM are/is negative, then the control 
system is unstable. 

Example3: A unity feedback control system has 

G(s)= 
𝟐𝟎

𝒔(𝟏 +𝟎.𝟏𝒔)(𝟏+𝟎.𝟎𝟏𝒔)
 

Draw the bode plot. Find Gain crossover frequency, phase crossover frequency, gain margin 
and phase margin. 
  Solution: Put s= jω in open loop transfer function 
 

G(s)= 
𝟐𝟎

jω(𝟏 +𝟎.𝟏jω)(𝟏+𝟎.𝟎𝟏jω)
 

 

|G(jω)|∠G(jω)= 
20

−𝜔2√1+(𝟎.𝟏ω)2√1+(𝟎.𝟎𝟏ω)2 
∠ − 90° − 𝑡𝑎𝑛−10.1𝜔 − 𝑡𝑎𝑛−10.01𝜔 

 
 

Sl. 
No 

Factor Corner 
Frequency 

Slope Asymptotic log magnitude 

1 20

𝑗𝜔
 

None -20 
db/decade 

Straight line of slope -20 db/decade and 
intersecting the 0 dB axis at ω=K=20 and 

extend upto first corner frequency 10. 
2 1

1 + 0.1 𝑗𝜔
 

10  20 db/decade Draw a net slope (-20) + (-20)= -40 db/decade 
from corner frequency 10 to the next corner 
frequency 100. 

3 1

1 + 0.01 𝑗𝜔
 

100 -20 
db/decade 

Draw the net slope of (- 40)+(-20)= -60 
db/decade from  corner frequency 100 to ∞. 

 
The table shown below shows phase angle for the different value of ω. 
 

 
 



 
From the plots 
1. Gain crossover frequency ωgc = 13.5 
2. Phase crossover frequency ωpc = 33 
3. ωpc >ωgc, GM & PM are +ve, hence the system become stable.       
4. Gain Margin = + 15 db 
5. Phase Margin= 180ᵒ-(+124ᵒ)= +56ᵒ       
 

All pass and minimum phase system 
 

If all the poles and zeros of any transfer function lie o the left half of s-plane, such type of 
transfer function is known as minimum phase transfer function. 

The transfer function having a pole-zero pattern which is antisymmetric about the 
imaginary axis i.e for every pole in the left half plane, there is a zero in the mirror image position. 
This type of transfer function is known as all pass transfer function. 

 A common example of such transfer function is 
 

G(𝑗𝜔)= 
1− 𝑗𝜔𝑇

1+ 𝑗𝜔𝑇
                                                           (1) 

 
Pole zero configuration of equation 1is shown below: 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

Figure 1. All pass system 
 
 
 
All pass transfer function has a magnitude of unity at all frequency and a phase angle of                
(- 2 tan-1𝜔𝑇)which varies from 0ᵒ to -180ᵒ as 𝜔 increases from 0 to ∞. The property of unit 
magnitude at all frequencies applies to  all transfer function with antisymmetric  pole-zero 
pattern. Physical systems with this property are called all-pass system. 
 Now consider the case where the transfer function has poles in the left half s-plane and 
zero in both left and right half s-plane. Poles are not permitted to lie in the right half s-plane 
because such a system would be unstable. Consider the following transfer function 

G1(jω)=  
1− 𝑗𝜔𝑇

(1+𝑗𝜔𝑇1)(1+𝑗𝜔𝑇2)
          (2) 

Whose pole zero pattern is shown in figure     . This transfer function may be rewritten as  
 

G1(jω)= [
1+𝑗𝜔𝑇

(1+𝑗𝜔𝑇1)(1+𝑗𝜔𝑇2)
] [

1− 𝑗𝜔𝑇

1+ 𝑗𝜔𝑇
] = G2(jω) G(jω)      (3) 

Which is now become the product of two transfer function G2(jω) i.e minimum phase transfer 
function shown in figure (2b) and G(jω) i.e all pass transfer function shown in figure (2c). It is 
clear that G1(jω) and G2(jω) have identical curve of magnitude Vs frequency but their phase Vs 
frequency curve are different as shown in figure(3). G2(jω) having a smaller range of phase angle 
than G1(jω). A transfer function which has one or more zeros and no pole in the right half s-plane 
is known as non- minimum phase transfer function. 
 In general if the transfer function has any zeros in the right half s-plane, it is possible to 
extract them one by one by associating them with all-pass transfer function as shown in 
figure(2a). 
 A common example of a non-minimum phase element is transportation lag which has 
transfer function  

 
 G(𝑗𝜔)= 𝑒−𝑗ωT= 1∠ − 𝜔𝑇 rad = 1∠ − 57.3𝜔𝑇 degree 
 
Other possible non-minimum transfer function are: 
1. where more than one possible signal paths are available between input and output as in     
     lattice network. 
2. When there is inductive coupling between input and output in addition to conduction. 



 

Figure 2 

 
Figure 3 Phase Vs frequency graph 

 

Polar Plots 
Polar plot is a plot which can be drawn between magnitude and phase. It is a plot of magnitude 
|𝐺(𝑗𝜔)| versus phase angle∠𝐺(𝑗𝜔)on polar co-ordinates as input frequency (ω) is varied from 0 

to ∞. Here, the magnitudes are represented by normal values only. 

The polar form of G(jω) is 
G(jω)= |G(jω)| ∠G(jω) 

Rules for Drawing Polar Plots 

Follow these rules for plotting the polar plots. 

Step1. Substitute, s=jω in the open loop transfer function. 
Step2. Write the expressions for magnitude and the phase of G(jω) 



Step3. Find the starting magnitude and the phase of G(jω) by substituting ω=0. So, the polar plot 
starts with this magnitude and the phase angle. 
Step4. Find the ending magnitude and the phase of G(jω) by substituting ω=∞. So, the polar plot 
ends with this magnitude and the phase angle. 
Step5. Check whether the polar plot intersects the real axis, by making the imaginary term 
of G(jω) equal to zero and find the value(s) of ω. 
Step6. Determine the intersection of polar plot with real axis and imaginary axis, as follows: 

i. Rationalise the function G(jω) and separate the real and imaginary parts. 
ii. Intersection with imaginary axis: equate the real term of |G(jω)| to zero and find the    
   value of frequency (ω) at which the polar plot intersects the imaginary axis. Now put    
   this value of ω into |G(jω)|. Which gives |G(jω)| at this point of intersection. 
iii. Intersection with real axis: equate the imaginary term of |G(jω)| to zero and find the    
    value of frequency (ω) at which the polar plot intersects the real axis. Now put    
    this value of ω into |G(jω)|. Which gives |G(jω)| at this point of intersection. 

Step7.  By using this information, plot the points on the complex plane. Make the arrow on the 
plot for increasing frequency from 0 to ∞. 

 

Example1: Consider the open loop transfer function of a closed loop control system. 

G(s)=
1

(1+𝑠𝑇1)(1+𝑠𝑇2)
 

 Draw the polar plot. 

Step 1 − Substitute, s=jω in the open loop transfer function. 

G(jω)=
1

(1+𝑗𝜔𝑇1)(1+𝑗𝜔𝑇2)
 

The magnitude of the open loop transfer function is 

|G(jω)|=
1

√1+(𝜔𝑇1)2√1+(𝜔𝑇2)2
 

The phase angle of the open loop transfer function is 

∠G(jω)=−tan-1 𝜔𝑇1−tan-1 𝜔𝑇2 

Step 2 − The following table shows the magnitude and the phase angle of the open loop transfer 

function at ω=0 rad/sec and ω=∞ rad/sec. 

Frequency (rad/sec) Magnitude Phase angle(degrees) 

0 1 0 

∞ 0 -180ᵒ 



So, the polar plot starts at (1,00) and ends at (0,−1800). The first and the second terms within the 
brackets indicate the magnitude and phase angle respectively. 

Step 3 − This polar plot will intersect the negative imaginary axis. The phase angle 
corresponding to the negative imaginary axis is −900 or 2700. So, by equating the phase angle of 
the open loop transfer function to either −900 or 2700, we will get the ω value as  

∠G(jω)=−tan-1 𝜔𝑇1−tan-1 𝜔𝑇2= −900  

⇒  
 𝜔𝑇1+ 𝜔𝑇2

1−𝜔²𝑇1𝑇2
 = ∞ ⇒  𝜔 =

1

√𝑇1𝑇2
 

 

By substituting ω=
1

√𝑇1𝑇2
 in the magnitude of the open loop transfer function, we will get  

|G(jω)|=
1

√1+(
1

√𝑇1𝑇2
𝑇1)

2
√1+(

1

√𝑇1𝑇2
𝑇2)

2
 = 

√𝑇1𝑇2

𝑇1+𝑇2
 

So, we can draw the polar plot with the above information on the polar graph sheet. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



The following table shows polat plot for different type of control system: 
 

 
 
 
 
 
 



CHAPTER- V 
Nyquist Plots 

Introduction: 

Nyquist plots are the continuation of polar plots for finding the stability of the closed loop 
control systems by varying ω from −∞ to ∞. That means, Nyquist plots are used to draw the 
complete frequency response of the open loop transfer function. 

Principle of argument 
The Nyquist stability criterion works on the principle of argument. It states that if there are P 
poles and Z zeros are enclosed by the ‘s’ plane contour, then the corresponding G(s)H(s) plane 
must encircle the origin P−Z times. So, we can write the number of encirclements N as, 
N=P−Z 

 If the ‘s’ plane contour contains only poles, then the direction of the encirclement in 
the q(s) plane will be opposite (counter clock wise) to the direction of ‘s’ plane contour. 

 If the ‘s’ plane contour contains only zeros, then the direction of the encirclement in 
the q(s) plane will be in the same (clock wise) direction as that of ‘s’ plane contour. 

 
For example, in case of 1 zero and 3 poles enclosed by the s- plane contour, the net encirclement 
of the origin by the q(s) plane contour is (3-1) two counter-clockwise revolution as shown in 
figure below. This relationship between the enclosure of poles and zeros of G(s)H(s) b the s-plane 
contour and the encirclement of the origin by  G(s)H(s) contour is commonly known as principle 
of argument.   

 
 

 Nyquist stability criterion  
 
The characteristics equation of a system is 
q(s) = 1+G(s)H(s) 
The standard  pole zero form of the OLTF G(s)H(s) is 
 

G(s)H(s) = 𝐾
(𝑠+𝑧1)(𝑠+𝑧2)−−−−−−−(𝑠+𝑧𝑚)

(𝑠+𝑃1)(𝑠+𝑃2)−−−−−−−−(𝑠+𝑃𝑛)
       (1) 

 



q(s) = 1+ 𝐾 ؞
(𝑠+𝑧1)(𝑠+𝑧2)−−−−−−−(𝑠+𝑧𝑚)

(𝑠+𝑃1)(𝑠+𝑃2)−−−−−−−−(𝑠+𝑃𝑛)
  

 

= 
(𝑠+𝑃1)(𝑠+𝑃2)−−−−−−−−(𝑠+𝑃𝑛)+𝐾(𝑠+𝑧1)(𝑠+𝑧2)−−−−−−−(𝑠+𝑧𝑚)

(𝑠+𝑃1)(𝑠+𝑃2)−−−−−−−−(𝑠+𝑃𝑛)
 

 

=
(𝑠+𝑧1

′ )(𝑠+𝑧2
′ )−−−−−−−−−(𝑠+𝑧𝑛

′ )

(𝑠+𝑃1)(𝑠+𝑃2)−−−−−−−−(𝑠+𝑃𝑛)
        (2) 

From the above equation it is seen that the zeros of q(s) are the root of the characteristics equation 
and the poles q(s) are same as the poles of open loop system. For the system to be stable, the roots 
of the characteristics equation and hence the zeros of q(s) must lie in the left half s-plane. It is 
important to note that even if some of the open-loop poles lie in  the right half s-plane all the 
zeros of q(s) i.e, the closed-loop poles may lie in the left half s-plane. It means that an open-loop 
unstable system may lead to a closed-loop stable system. 
 In order to investigate the presence of any zero of q(s) in the right half of s-plane, a 
contour to be chosen which completely encloses the right half of s-plane called as Nyquist 
contour. It is directed clockwise and consist of an infinite line segment C1 and an arc C2 of 
infinite redius. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
As the Nyquist contour encloses all the right half s-plane poles and zeros of q(s), let there are ‘z’ 

zeros and ‘P’ poles in the right half of s-plane. As s moves along the nyquist contour in the s-
plane, a closed contour Γq is traversed in q(s) plane which encloses the origin N (=P-Z) times in 
anticlockwise direction.  
For the system to be stable, there should be no zeros of q(s) in the right half of s-plane i.e, 

Z = 0 
So N= P 

The above equation implies that for a close loop system to be  stable, the number of counter-
clockwise encirclement  of the origin of the q(s) plane by the contour Γq should be equal the 
number of  the right half  s-plane poles of q(s) which are also the poles of open-loop  transfer 
function G(s)H(s). 
The open-loop transfer function can be written as 

G(s)H(s)=q(s)- 1= [1+ G(s)H(s)]-1       (3) 



Therefore the contour ΓGH of G(s)H(s) corresponding to the nyquist contour in the s-plane  is the 
same as contour Γq  of q(s) (=1+ G(s)H(s)) drawn from the point (-1+j0). Thus the encirclement 
of the origin by the contour Γq of q(s) is equivalent to the encirclement of the point (-1+j0) by the 
contour ΓGH of G(s)H(s) as shown below. 
 

 
 

Statement of nyquist stability criterion: 
1. If the contour ΓGH corresponding to the Nyquist contour in the s-plane encircles the point (-
1+j0) in the counter-clockwise direction as many times as the number of  right half s-plane pole 
of G(s)H(s), the close loop system is stable. 
2. The closed loop system is stable if the contour ΓGH does not encircles the point (-1+j0). 
 
Mapping of Nyquist contour into the contour ΓGH of G(s)H(s):  
1. For imaginary axis: Put s= jω in G(s)H(s) where s varies from –j∞ to +j∞ . 

2. For infinite semi circle: put s= 𝑅𝑒𝑗𝜃 where R→∞ and θ varies from + 90ᵒ to -90ᵒ. 

3. For presence of pole at origin: put s= ∊ 𝑒𝑗𝜃where ∊→∞ and θ varies from - 90ᵒ to +90ᵒ. 

4. For presence of pole at imaginary axis: put s= jω1+ ∊ 𝑒𝑗𝜃where ∊→∞ and θ varies from - 90ᵒ to 
+90ᵒ. 

Hence the complete contour ΓGH is the polar plot of G(jω)H(jω) with  varies from ω -∞ to +∞.  

Nyquist stability criterion applied to inverse Polar plot: 

It is more convenient to work with inverse function 1/ G(jω)H(jω) rather than the direct function 

G(jω)H(jω). Here we will see that the Nyquist stability criterion for direct polar plot can be 

extended for use to inverse polar plot after minor modification. 

 Let us consider a open-loop transfer function: 

G(s)H(s) = 𝐾
(𝑠+𝑧1)(𝑠+𝑧2)−−−−−−−(𝑠+𝑧𝑚)

(𝑠+𝑃1)(𝑠+𝑃2)−−−−−−−−(𝑠+𝑃𝑛)
       (4) 



For the system to be stable none of the roots of the characteristics equation should lie in the right 
half s-plane or on the jω-axis. The characteristics equation is  

 q(s)= 1+ G(s)H(s) = 
(𝑠+𝑧1

′ )(𝑠+𝑧2
′ )−−−−−−−−−(𝑠+𝑧𝑛

′ )

(𝑠+𝑃1)(𝑠+𝑃2)−−−−−−−−(𝑠+𝑃𝑛)
     (5) 

Dividing equation 5 by 4, we get 

q’(s)= 
1

G(s)H(s)
 +1= 

(𝑠+𝑧1
′ )(𝑠+𝑧2

′ )−−−−−−−−−(𝑠+𝑧𝑛
′ )

(𝑠+𝑧1)(𝑠+𝑧2)−−−−−−−(𝑠+𝑧𝑚)
      (6) 

From equation 5 and 6 it is  seen that the zeros of q’(s) is same as the q(s), which are the roots of 

the characteristics equation.  It is further noticed that the poles of q(s) are same as the poles of 

G(s)H(s), while the poles of  q’(s) are same as the poles of  
1

G(s)H(s)
 or the zeros of G(s)H(s). 

  It can be concluded that if  
1

G(s)H(s)
 has P right half s-plane poles and the characteristics 

equation has Z right half s-plane zeros, the locus of  
1

G(s)H(s)
 encircle the point (-1+j0) N times in 

counter-clockwise direction where N= P-Z. 
 Since for system stability no zeros of the characteristics equation locate on right half s-
plane i.e , Z=0, the Nyquist stability criterion for inverse polar plots can be stated below: 
 

“It the Nyquist plot of  
1

G(s)H(s)
 corresponding to the Nyquist contour in the s-plane, encircles 

counter-clockwise the point (-1+j0) as many times as are the number of right half s-plane pole of  
1

G(s)H(s)
, the closed-loop system is stable. “ 

 

  In special case where 
1

G(s)H(s)
 has no pole in the right half s-plane, the close loop system is 

stable provided the net encirclement of (-1+j0) point by the Nyquist plot of 
1

G(s)H(s)
 is zero. 

 
Assessment of relative stability using Nyquist criterion: 

 The measure of relative stability of a closed-loop systems which are open-loop stable can 
be analysed through the study of Nyquist  plots. The stability of such system can be determined by 
polar plot of G(s)H(s). It can be imagined that as the polar plot gets closer to (-1+j0) point, the 
system tends towards instability. 

 Consider two different systems whose closed loop poles are shown on the s-plane in figure 
a and b respectively. It is seen that system A is more stable than system B because its closed-loop 
poles are located comparatively away to the left from jω-axis. The open-loop frequency response 
(polar) plots for system A and B are shown in figure ‘c’ and ‘d’, respectively. The comparison of  

the closed-loop pole location of these two system with their corresponding polar plot shows that 
as a polar plot moves closer to (-1+j0) point, the system closed-loop poles move closer to the jω-
axis and hence the system becomes  relatively less stable and vice versa. 



 

The figure as given below shows a G(jω)H(jω) locus which crosses the negative real axis at a 
frequency ω=ω2 with an intercept of a. Let a unit circle centred at origin (passes through point -
1+j0) intersect the G(jω)H(jω) locus at a frequency ω=ω1 and let the phasor  G(jω1)H(jω1) makes 
an angle of ф with the negative real axis measured positively in counter-clockwise direction. It is 
observed that as G(jω)H(jω) locus approaches (-1+j0) point, the relative stability reduces. 

 
 
 
 
 
 



Constant Magnitude Loci or Constant M Circle 
 
The closed loop transfer function of a unity feedback system is given by  
 

 
 
 
 
 
 
 
 
 
          (1) 
 
 
          (2) 
 
 
 
 
           (3) 



 

 

 

 

 

 
(4) 
 

     

Equation 2 represents the equation of a circle with centre at [
𝑀2

(1−𝑀2)
, 0] having radius of 

𝑀

(1−𝑀2)
  

If M=1, then Equation 3 becomes(1 + 𝑥)2 + 𝑦2 = 𝑥2  +  𝑦2    or x= −
1

2
                      (5) 

It is a equation for straight line parallel to the y-axis and passing through (−
1

2
, 0) in the G(jω) 

plane. For each value of M (except M=1) we get a circle. These circles are known as Constant 
Magnitude Loci or Constant M Circle. 
 
 
 

 



  Constant Phase Loci or Constant N Circle 
From equation 1  
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(10) 

 

Equation 10 represents the equation of circle with it centre at (−
1

2
,

1

2𝑁
) with radius √(

1

4
+

1

4𝑁2
  )    

For different values of N i.e, phase angle θ, equation 10 represents the family of the circles. For a 

particular circle, the value of N i.e, phase angle θ remain constant on it. Therefore these circle are  
known as constant phase loci or N circles. 



 

Nichols Plot 
 

Constant magnitude loci that are M-circles and constant phase angle loci that are N-circles 
are the fundamental components in designing the Nichols chart. The constant M and constant N 
circles in G (jω) plane can be used for the analysis and design of control systems. However the 
constant M and constant N circles in gain phase plane are prepared for system design and analysis 
as these plots supply information with fewer manipulations. Gain phase plane is the graph having 
gain in decibel along the ordinate (vertical axis) and phase angle along the abscissa (horizontal 
axis). The M and N circles of G (jω) in the gain phase plane are transformed into M and N 

contours in rectangular co-ordinates. A point on the constant M loci in G (jω) plane is transferred 

to gain phase plane by drawing the vector directed from the origin of G (jω) plane to a particular 

point on M circle and then measuring the length in db and angle in degree. 
The critical point in G (jω), plane corresponds to the point of zero decibel and -180o in the gain 
phase plane. Plot of M and N circles in gain phase plane is known as Nichols chart /plot. 
 
The Nichols plot is named after the American engineer N.B Nichols who formulated this plot. 
Compensators can be designed using Nichols plot. Nichols plot technique is however also used in 

https://www.electrical4u.com/control-system-closed-loop-open-loop-control-system/


designing of dc motor. This is used in signal processing and control design. Nyquist plot in 
complex plane shows how phase of transfer function and frequency variation of magnitude are 
related. We can find out the gain and phase for a given frequency. Angle of positive real axis 
determines the phase and distance from origin of complex plane determines the gain.  
 

 

 



 

 

 



 

 

 



 

 



 

 

 



 

 

Step-6: Check for stability: 

As P= 0; N=0; Hence Z=0, System is stable.  
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