

LECTURE NOTES ON

MICROPROCESSOR AND
MICROCONTROLLER
2nd Year, 4th Semester

PREPARED BY:-

ER.PURNA CHANDRA NAHAK

LECTURER IN E&TC DEPT.

CONTENTS

Unit-1: Microprocessor (Architecture and Programming-8085-8-bit)
1.1 Introduction to Microprocessor and Microcomputer & distinguish between them.
1.2 Concept of Address bus, Data bus, Control bus & System Bus
1.3 General Bus structure Block diagram.
1.4 Basic Architecture of 8085 (8 bit) Microprocessor
1.5 Signal Description (Pin diagram) of 8085 Microprocessor
1.6 Register Organizations, Distinguish between SPR & GPR, Timing & Control Module,
1.7 Stack, Stack pointer &Stack top.
1.8 Interrupts: -8085 Interrupts, Masking of Interrupt (SIM, RIM)
Unit-2: Instruction Set and Assembly Language Programming
2.1 Addressing data & differentiate between one-byte, two-byte &three-byte instructions
with examples.
2.2 Addressing modes in instructions with suitable examples.
2.3 Instruction Set of 8085(Data Transfer, Arithmetic, Logical, Branching, Stack& I/O,
Machine Control)
2.4 Simple Assembly Language Programming of 8085
2.4.1 Simple Addition & Subtraction
2.4.2 Logic Operations (AND, OR, Complement 1’s & 2’s) & Masking of bits
2.4.3 Counters & Time delay (Single Register, Register Pair, More than Two Register)
2.4.4 Looping, Counting & Indexing (Call/JMP etc).
2.4.5 Stack & Subroutine programmes.
2.4.6 Code conversion, BCD Arithmetic & 16 Bit data Operation, Block Transfer.
2.4.7 Compare between two numbers
2.4.8 Array Handling (Largest number & smallest number in the array)
2.5 Memory & I/O Addressing,
Unit-3: TIMING DIAGRAMS.
3.1 Define opcode, operand, T-State, Fetch cycle, Machine Cycle, Instruction cycle &
discuss the concept of timing diagram.
3.2 Draw timing diagram for memory read, memory write, I/O read, I/O write machine
cycle.
3.3 Draw a neat sketch for the timing diagram for 8085 instruction (MOV, MVI, LDA
instruction).
Unit-4 Microprocessor Based System Development Aids
4.1 Concept of interfacing
4.2 Define Mapping &Data transfer mechanisms - Memory mapping & I/O Mapping
4.3 Concept of Memory Interfacing: - Interfacing EPROM & RAM Memories
4.4 Concept of Address decoding for I/O devices
4.5 Programmable Peripheral Interface: 8255
4.6 ADC & DAC with Interfacing.
4.7 Interfacing Seven Segment Displays
4.8 Generate square waves on all lines of 8255
4.9 Design Interface a traffic light control system using 8255.
4.10 Design interface for stepper motor control using 8255.
4.11 Basic concept of other Interfacing DMA controller, USART
Unit-5 Microprocessor (Architecture and Programming-8086-16 bit)
5.1 Register Organisation of 8086
5.2 Internal architecture of 8086

5.3 Signal Description of 8086
5.4 General Bus Operation& Physical Memory Organisation
5.5 Minimum Mode & Timings,
5.6 Maximum Mode & Timings,
5.7 Interrupts and Interrupt Service Routines, Interrupt Cycle, Non-Maskable Interrupt,
Maskable Interrupt
5.8 8086 Instruction Set & Programming: Addressing Modes, Instruction Set, Assembler
Directives and Operators,
5.9 Simple Assembly language programming using 8086 instructions.
Unit-6 Microcontroller (Architecture and Programming-8 bit)
6.1 Distinguish between Microprocessor & Microcontroller
6.2 8-bit & 16-bit microcontroller
6.3 CISC & RISC processor
6.4 Architecture of 8051 Microcontroller
6.5 Signal Descriptionof8051Microcontrollers
6.6 Memory Organisation-RAM structure, SFR
6.7 Registers, timers, interrupts of 8051 Microcontrollers
6.8 Addressing Modes of 8051
6.9 Simple 8051 Assembly Language Programming Arithmetic & Logic Instructions,
JUMP, LOOP,
CALL Instructions, I/O Port Programming
6.10 Interrupts, Timer & Counters
6.11 Serial Communication
6.12 Microcontroller Interrupts and Interfacing to 8255

UNIT-1

8085 Microprocessor

 A Microprocessor is a multipurpose, programmable, clock-driven, register-based

electronic device that reads binary instructions from a storage device called memory,

accepts binary data as input and processes data according to those instructions and

provide results as output.

 Microprocessor is a controlling unit of a micro-computer, fabricated on a small chip

capable of performing ALU (Arithmetic Logical Unit) operations and communicating with

the other devices connected to it.

 Microprocessor consists of an ALU, register array, and a control unit.

 ALU performs arithmetical and logical operations on the data received from the memory

or an input device.

 Register array consists of registers identified by letters like B, C, D, E, H, L and
accumulator.

 The control unit controls the flow of data and instructions within the computer.

Block Diagram of a Basic Microcomputer

How does a Microprocessor Work?
The microprocessor follows a sequence: Fetch, Decode, and then Execute.

 Initially, the instructions are stored in the memory in a sequential order.

 The microprocessor fetches those instructions from the memory, then decodes it and

executes those instructions till STOP instruction is reached.

 Later, it sends the result in binary to the output port. Between these processes, the
register stores the temporarily data and ALU performs the computing functions.

Classification of Microprocessor

Microprocessor is classified into two categories-

RISC & CISC

RISC Processor
 RISC stands for Reduced Instruction Set Computer.

 It is designed to reduce the execution time by simplifying the instruction set of the

computer.

 Using RISC processors, each instruction requires only one clock cycle to execute results

in uniform execution time.

 This reduces the efficiency as there are more lines of code, hence more RAM is needed to
store the instructions.

 The compiler also has to work more to convert high-level language instructions into

machine code.

Characteristics of RISC
The major characteristics of a RISC processor are as follows −

 It consists of simple instructions.

 It supports various data-type formats.

 It utilizes simple addressing modes and fixed length instructions for pipelining.

 It supports register to use in any context.

 One cycle execution time.

 “LOAD” and “STORE” instructions are used to access the memory location.

 It consists of larger number of registers.

 It consists of less number of transistors.

CISC Processor
 CISC stands for Complex Instruction Set Computer.

 It is designed to minimize the number of instructions per program, ignoring the number
of cycles per instruction.

 The emphasis is on building complex instructions directly into the hardware.

 The compiler has to do very little work to translate a high-level language into assembly
level language/machine code because the length of the code is relatively short, so very

little RAM is required to store the instructions.

Characteristics of CISC
 Variety of addressing modes.

 Larger number of instructions.

 Variable length of instruction formats.

 Several cycles may be required to execute one instruction.

 Instruction-decoding logic is complex.

 One instruction is required to support multiple addressing modes.

8085 Microprocessor
It is an 8-bit microprocessor designed by Intel in 1977 using NMOS technology.

It has the following configuration −

 8-bit data bus

 16-bit address bus, which can address upto 64KB

 A 16-bit program counter

 A 16-bit stack pointer

 Six 8-bit registers arranged in pairs: BC, DE, HL

 Requires +5V supply to operate at 3 MHZ single phase clock

It is used in washing machines, microwave ovens, mobile phones, etc.

8085 Microprocessor – Functional Units

8085 consists of the following functional units −

Accumulator
It is an 8-bit register used to perform arithmetic, logical, I/O & LOAD/STORE operations. It is

connected to internal data bus & ALU.

Arithmetic and logic unit
As the name suggests, it performs arithmetic and logical operations like Addition, Subtraction,

AND, OR, etc. on 8-bit data.

General purpose register
There are 6 general purpose registers in 8085 processor, i.e., B, C, D, E, H & L. Each register can

hold 8-bit data.

These registers can work in pair to hold 16-bit data and their pairing combination is like B-C, D-

E & H-L.

Program counter
It is a 16-bit register used to store the memory address location of the next instruction to be

executed. Microprocessor increments the program whenever an instruction is being executed, so

that the program counter points to the memory address of the next instruction that is going to be

executed.

Stack pointer
It is also a 16-bit register works like stack, which is always incremented/decremented by 2 during

push & pop operations.

Temporary register
It is an 8-bit register, which holds the temporary data of arithmetic and logical operations.

Flag register
It is an 8-bit register having five 1-bit flip-flops, which holds either 0 or 1 depending upon the

result stored in the accumulator.

These are the set of 5 flip-flops −

Sign (S)- set to 1 if result is negative.

Zero (Z)- set to 1 if result is zero.

Auxiliary Carry (AC)- set to 1 if carry arises from 3rd bit to 4th bit.

Parity (P)- set to 1 if result has even no. of 1.

Carry (CS)- set to 1 if carry arises after arithmetic and logical operation.

Its bit position is shown in the following table –

 B7 B6 B5 B4 B3 B2 B1 B0

S Z X AC X P X CS

Instruction register and decoder
It is an 8-bit register. When an instruction is fetched from memory then it is stored in the

Instruction register. Instruction decoder decodes the information present in the Instruction

register.

Timing and control unit
It provides timing and control signal to the microprocessor to perform operations. Following are

the timing and control signals, which control external and internal circuits −

Control Signals: READY, RD’, WR’, ALE

Status Signals: S0, S1, IO/M’

DMA Signals: HOLD, HLDA

RESET Signals: RESET IN, RESET OUT

Interrupt control
As the name suggests it controls the interrupts during a process. When a microprocessor is

executing a main program and whenever an interrupt occurs, the microprocessor shifts the

control from the main program to process the incoming request. After the request is completed,

the control goes back to the main program.

There are 5 interrupt signals in 8085 Microprocessor: INTR, RST 7.5, RST 6.5, RST 5.5, TRAP.

Serial Input/output control
It controls the serial data communication by using these two instructions: SID (Serial input data)

and SOD (Serial output data).

Address buffer and address-data buffer
The content stored in the stack pointer and program counter is loaded into the address buffer and

address-data buffer to communicate with the CPU. The memory and I/O chips are connected to

these buses; the CPU can exchange the desired data with the memory and I/O chips.

Address bus and data bus
Data bus carries the data to be stored. It is bidirectional, whereas address bus carries the location

to where it should be stored and it is unidirectional. It is used to transfer the data & Address I/O

devices.

Pin diagram and description

The pins of 8085 microprocessor can be classified into seven groups −

Address bus

A15-A8, it carries the most significant 8-bits of memory/IO address.

Data bus

AD7-AD0, it carries the least significant 8-bit address and data bus.

Control and status signals

These signals are used to identify the nature of operation. There are 3 control signal and 3 status

signals.

Three control signals are RD, WR & ALE.

RD − This signal indicates that the selected IO or memory device is to be read and is ready for

accepting data available on the data bus.

WR − This signal indicates that the data on the data bus is to be written into a selected memory

or IO location.

ALE − It is a positive going pulse generated when a new operation is started by the

microprocessor. When the pulse goes high, it indicates address. When the pulse goes down it

indicates data.

Three status signals are IO/M, S0 & S1.

IO/M

This signal is used to differentiate between IO and Memory operations, i.e. when it is high

indicates IO operation and when it is low then it indicates memory operation.

S1 & S0

These signals are used to identify the type of current operation.

Power supply

There are 2 power supply signals − VCC & VSS. VCC indicates +5v power supply and VSS indicates

ground signal.

Clock signals

There are 3 clock signals, i.e. X1, X2, CLK OUT.

X1, X2 − A crystal (RC, LC N/W) is connected at these two pins and is used to set frequency of the

internal clock generator. This frequency is internally divided by 2.

CLK OUT − This signal is used as the system clock for devices connected with the microprocessor.

Interrupts & externally initiated signals

Interrupts are the signals generated by external devices to request the microprocessor to perform

a task. There are 5 interrupt signals, i.e., TRAP, RST 7.5, RST 6.5, RST 5.5, and INTR. We will discuss

interrupts in detail in interrupts section.

(INTA)’ − It is an interrupt acknowledgment signal.

RESET IN − This signal is used to reset the microprocessor by setting the program counter to

zero.

RESET OUT − This signal is used to reset all the connected devices when the microprocessor is

reset.

READY − This signal indicates that the device is ready to send or receive data. If READY is low,

then the CPU has to wait for READY to go high.

HOLD − This signal indicates that another master is requesting the use of the address and data

buses.

HLDA (HOLD Acknowledge) − It indicates that the CPU has received the HOLD request and it

will relinquish the bus in the next clock cycle. HLDA is set to low after the HOLD signal is removed.

Serial I/O signals

There are 2 serial signals, i.e., SID and SOD and these signals are used for serial communication.

SOD (Serial output data line) − The output SOD is set/reset as specified by the SIM instruction.

SID (Serial input data line) − The data on this line is loaded into accumulator whenever a RIM

instruction is executed.

Stack, stack top and stack pointer
 The stack is a LIFO (last in, first out) data structure implemented in the RAM area and is

used to store addresses and data when the microprocessor branches to a subroutine.

 Then the return address used to get pushed on this stack.

 Also, to swap values of two registers and register pairs we use the stack as well.

 The Stack Pointer register will hold the address of the top location of the stack.

 On a stack, we can perform two operations.

 PUSH and POP.

 In case of PUSH operation, the SP register gets decreased by 2 and new data item used to
insert on to the top of the stack.

 In case of POP operation, the data item will have to be deleted from the top of the stack

and the SP register will get increased by the value of 2.

Interrupts
 When microprocessor receives any interrupt signal from peripheral(s) which are

requesting its services, it stops its current execution and program control is transferred

to a sub-routine by generating CALL signal and after executing sub-routine by generating

RET signal again program control is transferred to main program from where it had

stopped.

 When microprocessor receives interrupt signals, it sends an acknowledgement (INTA) to
the peripheral which is requesting for its service.

Interrupts can be classified into various categories based on different parameters:

1. Hardware and Software Interrupts –

When microprocessors receive interrupt signals through pins (hardware) of microprocessor,

they are known as Hardware Interrupts. There are 5 Hardware Interrupts in 8085

Microprocessor. They are – INTR, RST 7.5, RST 6.5, RST 5.5, TRAP.

Software Interrupts are those which are inserted in between the program which means these

are mnemonics of microprocessor. There are 8 software interrupts in 8085 Microprocessor. They

are – RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6, RST 7.

2. Vectored and Non-Vectored Interrupts –

Vectored Interrupts are those which have fixed vector address (starting address of sub-routine)

and after executing these, program control is transferred to that address.

Vector Addresses are calculated by the formula 8 * TYPE

INTERRUPT VECTOR ADDRESS

TRAP (RST 4.5) 24 H

RST 5.5 2C H

RST 6.5 34 H

INTERRUPT VECTOR ADDRESS

RST 7.5 3C H

For Software interrupts vector addresses are given by:

INTERRUPT VECTOR ADDRESS

RST 0 00 H

RST 1 08 H

RST 2 10 H

RST 3 18 H

RST 4 20 H

RST 5 28 H

RST 6 30 H

RST 7 38 H

Non-Vectored Interrupts are those in which vector address is not predefined. The interrupting

device gives the address of sub-routine for these interrupts. INTR is the only non-vectored

interrupt in 8085 Microprocessor.

3. Maskable and Non-Maskable Interrupts –
Maskable Interrupts are those which can be disabled or ignored by the microprocessor. These

interrupts are either edge-triggered or level-triggered, so they can be disabled. INTR, RST 7.5,

RST 6.5, RST 5.5 are maskable interrupts in 8085 Microprocessor.

Non-Maskable Interrupts are those which cannot be disabled or ignored by microprocessor.

TRAP is a non-maskable interrupt. It consists of both level as well as edge triggering and is used

in critical power failure conditions.

Priority of Interrupts –

When microprocessor receives multiple interrupt requests simultaneously, it will execute the

interrupt service request (ISR) according to the priority of the interrupts.

Instruction for Interrupts –

i. Enable Interrupt (EI) – The interrupt enable flip-flop is set and all interrupts are enabled

following the execution of next instruction followed by EI. No flags are affected. After a system

reset, the interrupt enable flip-flop is reset, thus disabling the interrupts. This instruction is

necessary to enable the interrupts again (except TRAP).

ii. Disable Interrupt (DI) – This instruction is used to reset the value of enable flip-flop hence

disabling all the interrupts. No flags are affected by this instruction.

iii. Set Interrupt Mask (SIM) – It is used to implement the hardware interrupts (RST 7.5, RST

6.5, RST 5.5) by setting various bits to form masks or generate output data via the Serial Output

Data (SOD) line. First the required value is loaded in accumulator then SIM will take the bit

pattern from it.

iv. Read Interrupt Mask (RIM) – This instruction is used to read the status of the hardware

interrupts (RST 7.5, RST 6.5, RST 5.5) by loading into the A register a byte which defines the

condition of the mask bits for the interrupts. It also reads the condition of SID (Serial Input Data)

bit on the microprocessor.

UNIT-2

Instruction set and assembly language program

Opcodes and operands

 Instruction is divided into two parts: opcodes and operands.

 The opcode is the instruction that is executed by the CPU and the operand is the data or
memory location used to execute that instruction.

 An operand (written using hexadecimal notation) provides the data itself, or the location

where the data to be processed is stored.

 Some instructions do not require an operand and some may require more than one
operand.

Instruction size

 The 8085 instruction set is classified into 3 categories by considering the length of the
instructions.

 Three types of instruction are: 1-byte instruction, 2-byte instruction, and 3-byte

instruction.

1. One-byte instructions –

In 1-byte instruction, the opcode and the operand of an instruction are represented in one

byte.

Example- MOV A,B

2. Two-byte instructions –

Two-byte instruction is the type of instruction in which the first 8 bits indicates the opcode

and the next 8 bits indicates the operand.

Example- MVI A,34H

3. Three-byte instructions –

Three-byte instruction is the type of instruction in which the first 8 bits indicates the opcode

and the next two bytes specify the 16-bit address. The low-order address is represented in

second byte and the high-order address is represented in the third byte.
Example- LDA 2000H

Instruction set of 8085 Microprocessor
8085 instruction set is classified in 5 groups-

Data transfer group

Arithmetic group

Logical group

Branch control group

Machine control group

Data transfer group
Data transfer instructions are the instructions which transfers data in the microprocessor. They

are also called copy instructions.

Opcode Operand Explanation Example
MOV R1,R2 Move the data from R2 to R1 MOV A,B
MOV R,M Move data from memory location to R MOV B,M
MVI R,8-bit data Move the immediate 8-bit data to R MVI C,34H

MVI M,8-bit data Move the immediate 8-bit data to memory
location

MVI M,23H

LDA 16-bit address Load the data from 16-bit address to ACC LDA
2000H

STA 16-bit address Store the data of ACC to 16-bit address STA 2500H
LHLD 16-bit address Directly loads at H & L registers LHLD 2050
SHLD 16-bit address directly stores from H & L registers SHLD 2050
LXI rp, 16-bit data loads the specified register pair with data LXI H,

3050
XCHG exchanges H with D, and L with E XCHG
PUSH rp pushes rp to the stack PUSH H
POP rp pops the stack to rp POP H
IN 8-bit port

address
inputs contents of the specified port to A IN 01

OUT 8-bit port
address

outputs contents of A to the specified port OUT 02

Arithmetic group
Arithmetic Instructions are the instructions which perform basic arithmetic operations such as

addition, subtraction and a few more. In 8085 Microprocessor, the destination operand is

generally the accumulator. In 8085 Microprocessor, the destination operand is generally the

accumulator.

Opcode Operand Explanation Example
ADD R A = A + R ADD B
ADD M A = A + M ADD M
ADI 8-bit data A = A + 8-bit data ADI 50
ADC R A = A + R + prev. carry ADC B
ADC M A = A + Mc + prev. carry ADC M
ACI 8-bit data A = A + 8-bit data + prev. carry ACI 50
SUB R A = A – R SUB B
SUB M A = A – M SUB M
SUI 8-bit data A = A – 8-bit data SUI 50
SBB R A = A – R – prev. carry SBB B
SBB M A = A – M -prev. carry SBB M
SBI 8-bit data A = A – 8-bit data – prev. carry SBI 50
INR R R = R + 1 INR B
INR M M = M + 1 INR M
INX r.p. r.p. = r.p. + 1 INX H
DCR R R = R – 1 DCR B
DCR M M = M – 1 DCR M
DCX r.p. r.p. = r.p. – 1 DCX H
DAD r.p. HL = HL + r.p. DAD H

Logical group
Logical instructions are the instructions which perform basic logical operations such as AND, OR,

etc. In 8085 Microprocessor, the destination operand is always the accumulator. Here logical

operation works on a bitwise level.

Opcode Operand Explanation Example
ANA R A = A AND R ANA B
ANA M A = A AND M ANA M
ANI 8-bit data A = A AND 8-bit data ANI 50

ORA R A = A OR R ORA B
ORA M A = A OR M ORA M
ORI 8-bit data A = A OR 8-bit data ORI 50
XRA R A = A XOR R XRA B
XRA M A = A XOR M XRA M
XRI 8-bit data A = A XOR 8-bit data XRI 50
CMA A = 1’s compliment of A CMA
CMP R Compares R with A and triggers the flag register CMP B
CMP M Compares Mc with A and triggers the flag register CMP M
CPI 8-bit data Compares 8-bit data with A and triggers the flag register CPI 50
RRC Rotate accumulator right without carry RRC
RLC Rotate accumulator left without carry RLC
RAR Rotate accumulator right with carry RAR
RAL Rotate accumulator left with carry RAR
CMC Compliments the carry flag CMC
STC Sets the carry flag STC

Branch group
Branching instructions refer to the act of switching execution to a different instruction sequence

as a result of executing a branch instruction.

The three types of branching instructions are:

1. Jump (unconditional and conditional)

2. Call (unconditional and conditional)

3. Return (unconditional and conditional)

1. Jump Instructions – The jump instruction transfers the program sequence to the memory

address given in the operand based on the specified flag. Jump instructions are 2 types:

Unconditional Jump Instructions and Conditional Jump Instructions.

(a) Unconditional Jump Instructions: Transfers the program sequence to the described

memory address.

JMP 16-bit address Jumps to the address

Example- JMP 2050

(b) Conditional Jump Instructions: Transfers the program sequence to the described memory

address only if the condition in satisfied.

Opcode Operand Explanation Example
JC Address Jumps to the address if carry flag is 1 JC 2050
JNC Address Jumps to the address if carry flag is 0 JNC 2050
JZ Address Jumps to the address if zero flag is 1 JZ 2050
JNZ Address Jumps to the address if zero flag is 0 JNZ 2050
JPE Address Jumps to the address if parity flag is 1 JPE 2050
JPO Address Jumps to the address if parity flag is 0 JPO 2050
JM Address Jumps to the address if sign flag is 1 JM 2050
JP Address Jumps to the address if sign flag 0 JP 2050
JC Address Jumps to the address if carry flag is 1 JC 2050
JNC Address Jumps to the address if carry flag is 0 JNC 2050
JZ Address Jumps to the address if zero flag is 1 JZ 2050
JNZ Address Jumps to the address if zero flag is 0 JNZ 2050
JPE Address Jumps to the address if parity flag is 1 JPE 2050
JPO Address Jumps to the address if parity flag is 0 JPO 2050
JM Address Jumps to the address if sign flag is 1 JM 2050
JP Address Jumps to the address if sign flag 0 JP 2050

2. Call Instructions – The call instruction transfers the program sequence to the memory address

given in the operand. Before transferring, the address of the next instruction after CALL is pushed

onto the stack. Call instructions are 2 types: Unconditional Call Instructions and Conditional Call

Instructions.

(a) Unconditional Call Instructions: It transfers the program sequence to the memory address

given in the operand.

CALL 16-address Unconditionally calls

Example- CALL 2050

(b) Conditional Call Instructions: Only if the condition is satisfied, the instructions executes.

Opcode Operand Explanation Example
CC Address Call if carry flag is 1 CC 2050
CNC Address Call if carry flag is 0 CNC 2050
CZ Address Calls if zero flag is 1 CZ 2050
CNZ Address Calls if zero flag is 0 CNZ 2050
CPE Address Calls if parity flag is 1 CPE 2050
CPO Address Calls if parity flag is 0 CPO 2050
CM Address Calls if sign flag is 1 CM 2050
CP Address Calls if sign flag is 0 CP 2050

3. Return Instructions – The return instruction transfers the program sequence from the

subroutine to the calling program. Return instructions are 2 types: Unconditional Jump

Instructions and Conditional Jump Instructions.

(a) Unconditional Return Instruction: The program sequence is transferred unconditionally

from the subroutine to the calling program.

RET Return from the subroutine unconditionally

(b) Conditional Return Instruction: The program sequence is transferred unconditionally from

the subroutine to the calling program only is the condition is satisfied.

Opcode Operand Explanation Example
RC Return from the subroutine if carry flag is 1 RC
RNC Return from the subroutine if carry flag is 0 RNC
RZ Return from the subroutine if zero flag is 1 RZ
RNZ Return from the subroutine if zero flag is 0 RNZ
RPE Return from the subroutine if parity flag is 1 RPE
RPO Return from the subroutine if parity flag is 0 RPO
RM Returns from the subroutine if sign flag is 1 RM
RP Returns from the subroutine if sign flag is 0 RP

Machine control group
Opcode Operand Meaning Explanation
NOP No operation No operation is performed, i.e., the instruction is

fetched and decoded.
HLT Halt and enter wait

state
The CPU finishes executing the current instruction
and stops further execution. An interrupt or reset
is necessary to exit from the halt state.

DI Disable interrupts The interrupt enable flip-flop is reset and all the
interrupts are disabled except TRAP.

EI Enable interrupts The interrupt enable flip-flop is set and all the
interrupts are enabled.

RIM Read interrupt mask This instruction is used to read the status of
interrupts 7.5, 6.5, 5.5 and read serial data input
bit.

SIM Set interrupt mask This instruction is used to implement the
interrupts 7.5, 6.5, 5.5, and serial data output.

Addressing modes
The term addressing modes refers to the way in which the operand of an instruction is specified.

Types of addressing modes –
In 8085 microprocessor there are 5 types of addressing modes:

Immediate Addressing Mode –
In immediate addressing mode the source operand is always data. If the data is 8-bit, then the

instruction will be of 2 bytes, if the data is of 16-bit then the instruction will be of 3 bytes.

Examples:

MVI B,45 (move the data 45H immediately to register B)

LXI H,3050 (load the H-L pair with the operand 3050H immediately)

JMP address (jump to the operand address immediately)

Register Addressing Mode –
In register addressing mode, the data to be operated is available inside the register(s) and

register(s) is(are) operands. Therefore, the operation is performed within various registers of the

microprocessor.

Examples:

MOV A, B (move the contents of register B to register A)

ADD B (add contents of registers A and B and store the result in register A)

INR A (increment the contents of register A by one)

Direct Addressing Mode –
In direct addressing mode, the data to be operated is available inside a memory location and that

memory location is directly specified as an operand. The operand is directly available in the

instruction itself.

Examples:

LDA 2050 (load the contents of memory location into accumulator A)

LHLD address (load contents of 16-bit memory location into H-L register pair)

IN 35 (read the data from port whose address is 35)

Register Indirect Addressing Mode –
In register indirect addressing mode, the data to be operated is available inside a memory location

and that memory location is indirectly specified by a register pair.

Examples:

MOV A, M (move the contents of the memory location pointed by the H-L pair to the accumulator)

LDAX B (move contents of B-C register to the accumulator)

LHLD 9570 (load immediate the H-L pair with the data of the location 9570)

Implied/Implicit Addressing Mode –
In implied/implicit addressing mode the operand is hidden and the data to be operated is

available in the instruction itself.

Examples:

CMA (finds and stores the 1’s complement of the contents of accumulator A in A)

RRC (rotate accumulator A right by one bit)

RLC (rotate accumulator A left by one bit)

UNIT-3

Timing Diagram

Instruction cycle of 8085 Microprocessor
Time required to execute and fetch an entire instruction is called instruction cycle. It consists:

Fetch cycle – The next instruction is fetched by the address stored in program counter (PC) and

then stored in the instruction register.

Decode instruction – Decoder interprets the encoded instruction from instruction register.

Execution cycle – consists memory read (MR), memory write (MW), input output read (IOR) and

input output write (IOW)

The time required by the microprocessor to complete an operation of accessing memory or

input/output devices is called machine cycle. One time period of frequency of microprocessor is

called t-state. A t-state is measured from the falling edge of one clock pulse to the falling edge of

the next clock pulse.

Fetch cycle takes four t-states and execution cycle takes three t-states.

Timing diagram
Timing Diagram is a graphical representation. It represents the execution time taken by each

instruction in a graphical format. The execution time is represented in T-states.

Opcode fetch cycle

 Each instruction of the processor has one byte opcode.

 The opcodes are stored in memory. So, the processor executes the opcode fetch machine
cycle to fetch the opcode from memory.

 Hence, every instruction starts with opcode fetch machine cycle.

 The time taken by the processor to execute the opcode fetch cycle is 4T.

 In this time, the first, 3 T-states are used for fetching the opcode from memory and the

remaining T-states are used for internal operations by the processor.

Memory read cycle

 The memory read machine cycle is executed by the processor to read a data byte from

memory.

 The processor takes 3T states to execute this cycle.

 The instructions which have more than one byte word size will use the machine cycle

after the opcode fetch machine cycle.

Memory write cycle

 The memory write machine cycle is executed by the processor to write a data byte in
a memory location.

 The processor takes, 3T states to execute this machine cycle.

I/O read cycle

 The I/O Read cycle is executed by the processor to read a data byte from I/O port
or from the peripheral, which is I/O, mapped in the system.

 The processor takes 3T states to execute this machine cycle.

 The IN instruction uses this machine cycle during the execution.

I/O write cycle

 The I/O Read cycle is executed by the processor to write a data byte from system
to I/O port or peripheral, which is I/O mapped.

 The processor takes 3T states to execute this machine cycle.

 The OUT instruction uses this machine cycle during the execution.

Example-1
The instruction MOV B, C is of 1 byte; therefore, the complete instruction will be stored in a single

memory address.

2000 MOV B,C

Only opcode fetching is required for this instruction and thus we need 4 T states for the timing

diagram. For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1.

In Opcode fetch (t1-t4 T-states):

1. 00 – lower bit of address where opcode is stored, i.e., 00

2. 20 – higher bit of address where opcode is stored, i.e., 20.

3. ALE – provides signal for multiplexed address and data bus. Only in t1 it used as address bus

to fetch lower bit of address otherwise it will be used as data bus.

4. RD (low active) – signal is 1 in t1 & t4 as no data is read by microprocessor. Signal is 0 in t2 &

t3 because here the data is read by microprocessor.

5. WR (low active) – signal is 1 throughout, no data is written by microprocessor.

6. IO/M (low active) – signal is 1 in throughout because the operation is performing on memory.

7. S0 and S1 – both are 1 in case of opcode fetching.

Example-2

MVI B, 45
2000: Opcode
2001: 45

 The opcode fetch will be same in all the instructions.

 Only the read instruction of the opcode needs to be added in the successive T states.

 For the opcode fetch the IO/M (low active) = 0, S1 = 1 and S0 = 1. Also, 4 T states will be
required to fetch the opcode from memory.

 For the opcode read the IO/M (low active) = 0, S1 = 1 and S0 = 0. Also, only 3 T states will

be required to read data from memory.

In Opcode fetch (t1-t4 T-states) –

1. 00 – lower bit of address where opcode is stored.

2. 20 – higher bit of address where opcode is stored.

3. ALE – Provides signal for multiplexed address and data bus. Only in t1 it used as address bus

to fetch lower bit of address otherwise it will be used as data bus.

4. RD (low active) – Signal is 1 in t1 & t4, no data is read by microprocessor. Signal is 0 in t2 & t3,

data is read by microprocessor.

5. WR (low active) – Signal is 1 throughout, no data is written by microprocessor.

6. IO/M (low active) – Signal is 0 in throughout, operation is performing on memory.

7. S0 and S1 – Signal is 1 in t1 to t4 states, as to fetch the opcode from the memory.

In Opcode read (t5-t7 T-states) –

1. 01 – lower bit of address where data is stored.

2. 320 – higher bit of address where data is stored.

3. ALE – Provides signal for multiplexed address and data bus. Only in t5 it used as address bus

to fetch lower bit of address otherwise it will be used as data bus.

4. RD (low active) – Signal is 1 in t5 as no data is read by microprocessor. Signal is 0 in t6 & t7 as

data is read by microprocessor.

5. WR (low active) – Signal is 1 throughout, no data is written by microprocessor.

6. IO/M (low active) – Signal is 0 in throughout, operation is performing on memory.

7. S0 – Signal is 0 in throughout, operation is performing on memory to read data 45.

8. S1 – Signal is 1 throughout, operation is performing on memory to read data 45.

Example-3
41FF STA 526AH

 STA means Store Accumulator -The contents of the accumulator is stored in the

specified address (526A).

 The opcode of the STA instruction is said to be 32H. It is fetched from the memory

41FFH

 Then the lower order memory address is read (6A). - Memory Read Machine Cycle

 Read the higher order memory address (52).- Memory Read Machine Cycle

 The combination of both the addresses are considered and the content from

accumulator is written in 526A. - Memory Write Machine Cycle

 Assume the memory address for the instruction and let the content of accumulator is

C7H. So, C7H from accumulator is now stored in 526A.

Example-4
4105 INR M

 Fetching the Opcode 34H from the memory 4105H. (OF cycle)

 Let the memory address (M) be 4250H. (MR cycle -To read Memory address and data)

 Let the content of that memory is 12H.

 Increment the memory content from 12H to 13H. (MW machine cycle)

Counter and time delay
When the delay subroutine is executed, the microprocessor does not execute other tasks. For the

delay we are using the instruction execution times. executing some instructions in a loop, the

delay is generated. There are some methods of generating delays. These methods are as follows.

 Using NOP instructions

 Using 8-bit register as counter

 Using 16-bit register pair as counter.
Using NOT instructions:

 One of the main usage of NOP instruction is in delay generation.

 The NOP instruction is taking four clock pulses to be fetching, decoding and executing.

 In the 8085 MPU the internal clock frequency is 3MHz.

 So, from that we can easily determine that each clock period is 1/3 of a microsecond.

 So, the NOP will be executed in 1/3 * 4 = 1.333µs.

Using 8-bit register as counter:

 Counter is another approach to generate a time delay.

 In this case the program size is smaller.

 So, in this approach we can generate more time delay in less space.

 The following program will demonstrate the time delay using 8-bit counter.

 MVI B,FFH

LOOP: DCR B

 JNZ LOOP

 RET

 Here the first instruction will be executed once, it will take 7 T-states.
 DCR C instruction takes 4 T-states.
 This will be executed 255 (FF) times.
 The JNZ instruction takes 10 T-states when it jumps (It jumps 254 times), otherwise it

will take 7 T-States.
 And the RET instruction takes 10 T-States.

 7 + ((4*255) + (10*254)) + 7 + 10 = 3584.
 So, the time delay will be 3584 * 1/3µs = 1194.66µs.
 So, when we need some small delay, then we can use this technique with some other

values in the place of FF.
This technique can also be done using some nested loops to get larger delays. The following
code is showing how we can get some delay with one loop into some other loops.

 MVI B,FFH

L1: MVI C,FFH

L2: DCR C

 JNZ L2

 DCR B

 JNZ L1

 RET

From this block, if we calculate the delay, it will be nearly 305µs delay. It extends the time of
delay.

Using 16-bit register-pair as counter:

 Instead of using 8-bit counter, we can do that kind of task using 16-bit register pair.
 Using this method more time delay can be generated.
 This method can be used to get more than 0.5 seconds delay.

Program Time (T-States)

 LXI B,FFFFH
LOOP: DCX B
 MOV A,B
 ORA C
 JNZ LOOP
 RET

10
6
4
4
10 (For Jump), 7(Skip)
10

From that table, if we calculate the time delay:

10 + (6 + 4 + 4 + 10) * 65535H – 3 + 10 = 17 + 24 * 65535H = 1572857.
So, the time delay will be 1572857 * 1/3µs = 0.52428s. Here we are getting nearly 0.5s
delay.

Assembly language program
Example-1
Write an assembly language program to add two 8-bit numbers 45H and 32H in 8085
Microprocessor and store the result in 2050H. The starting address of the program is taken
as 2000.

Program address Mnemonics Operands Comments
2000 MVI A,45 Load 1st data 45H in ACC
2002 MVI B,32 Load 2nd data 32H in B
2004 ADD B A+B=A
2005 STA 2050 Store the result in 2050H
2008 HLT Stop the program

O/P address Result

2050H 77H

Example-2

Write an ALP to add 2 8-bit numbers stored in memory location 2050H and 2051H. Result
can be 8/16 bit and store it in 2052H and 2053H.

Program address Label Mnemonics Operands Comments

2000 MVI C,00 Initialize the carry

2002 LXI H,2050 Get the 1st data

2005 MOV A,M Load 1st data in ACC

2006 INX H Get 2nd data

2007 ADD M Add both data

2008 JNC LOOP If no carry, jump to LOOP

200B INR C If carry, increment register C

200C LOOP STA 2052 Store the sum in 2052

2010 MOV A,C Move carry to ACC

2011 STA 2053 Store carry in 5053

2014 HLT Stop the program

Without carry With carry
I/P address Data I/P address Data
2050 53 2050 D9
2051 27 2051 62
O/P address Result O/P address Result
2052 7A 2053 3B
2053 00 2053 01

UNIT-4

Microprocessor based system development aids
Interface is the path for communication between two components. Interfacing is of two types,
memory interfacing and I/O interfacing.
Memory interfacing

 Memory interfacing is used to provide more memory space to accommodate complex
programs for more complicated systems.

 Types of memories which are most commonly used to interface with 8085 are RAM, ROM,
and EEPROM.

 8085 can access 64kB of external memory.
 It can be explained as- total number of address lines in 8085 are 16, therefore it can access

2^16 = 65535 locations i.e., 64kB

I/O interfacing
 There are various communication devices like the keyboard, mouse, printer, etc.
 So, we need to interface the keyboard and other devices with the microprocessor by using

latches and buffers.
 This type of interfacing is known as I/O interfacing.

Block diagram of memory and I/O interfacing

Memory mapped I/O and I/O mapped I/O
In Memory Mapped Input Output −

 We allocate a memory address to an Input-Output device.
 Any instructions related to memory can be accessed by this Input-Output device.
 The Input-Output device data are also given to the Arithmetic Logical Unit.

Input-Output Mapped Input Output −

 We give an Input-Output address to an Input-Output device
 Only IN and OUT instructions are accessed by such devices.
 The ALU operations are not directly applicable to such Input-Output data.

So as a summary we can mention that −
 I/O is any general-purpose port used by processor/controller to handle peripherals

connected to it.

 I/O mapped I/Os have a separate address space from the memory. So, total addressed
capacity is the number of I/Os connected and a memory connected. Separate I/O-related
instructions are used to access I/Os. A separate signal is used for addressing an I/O device.

 Memory-mapped I/Os share the memory space with external memory. So, total addressed
capacity is memory connected only. This is underutilisation of resources if your processor
supports I/O-mapped I/O. In this case, instructions used to access I/Os are the same as
that used for memory.

 Let's take an example of the 8085 processor. It has 16 address lines i.e., addressing
capacity of 64 KB memory. It supports I/O-mapped I/Os. It can address up to 256 I/Os.

 If we connect I/Os to it an I/O-mapped I/O then, it can address 256 I/Os + 64 KB memory.
And special instructions IN and OUT are used to access the peripherals. Here we fully
utilize the addressing capacity of the processor.

 If the peripherals are connected in memory mapped fashion, then total devices it can
address is only 64K. This is underutilisation of the resource. And only memory-accessing
instructions like MVI, MOV, LOAD, SAVE are used to access the I/O devices.

8255 Programable Peripheral Interface (PPI)
 PPI 8255 is a general purpose programmable I/O device designed to interface the CPU

with its outside world such as ADC, DAC, keyboard etc.
 We can program it according to the given condition. It can be used with almost any

microprocessor.
 It consists of three 8-bit bidirectional I/O ports (24 I/O lines) which can be configured as

per the requirement.

Ports of 8255A
8255A has three ports, i.e., PORT A, PORT B, and PORT C.

 Port A (PA0-PA7) contains one 8-bit output latch/buffer and one 8-bit input buffer.
 Port B (PB0-PB7) is similar to PORT A.
 Port C can be split into two parts, i.e., PORT C lower (PC0-PC3) and PORT C upper (PC7-

PC4) by the control word.
These three ports are further divided into two groups, i.e., Group A includes PORT A and upper
PORT C. Group B includes PORT B and lower PORT C. These two groups can be programmed in
three different modes, i.e., the first mode is named as mode 0, the second mode is named as Mode
1 and the third mode is named as Mode 2.

Features of 8255A
The prominent features of 8255A are as follows −

 It consists of 3 8-bit I/O ports i.e., PA, PB, and PC.
 Address/data bus must be externally demultiplexed.
 It is TTL compatible.
 It has improved DC driving capability.

8255 Architecture

Control group A
 Control group A consist of port A and port C upper.
Control group B
 Control group B consists of port C lower and port B.
Data Bus Buffer

 It is a tri-state 8-bit buffer, which is used to interface the microprocessor to the system
data bus.

 Data is transmitted or received by the buffer as per the instructions by the CPU.
 Control words and status information is also transferred using this bus.
Read/Write Control Logic

 This block is responsible for controlling the internal/external transfer of
data/control/status word.

 It accepts the input from the CPU address and control buses, and in turn issues
command to both the control groups.

 Depending upon the value if CS’, A1 and A0 we can select different ports in different
modes as input-output function or BSR.

 This is done by writing a suitable word in control register (control word D0-D7).

CS’ A1 A0 Selection
0 0 0 PORT A
0 0 1 PORT B

0 1 0 PORT C
0 1 1 Control Register
1 X X No Selection

Pin diagram

CS
It stands for Chip Select. A LOW on this input selects the chip and enables the communication
between the 8255A and the CPU. It is connected to the decoded address, and A0 & A1 are
connected to the microprocessor address lines.
WR
It stands for write. This control signal enables the write operation. When this signal goes low, the
microprocessor writes into a selected I/O port or control register.
RESET
This is an active high signal. It clears the control register and sets all ports in the input mode
RD
It stands for Read. This control signal enables the Read operation. When the signal is low, the
microprocessor reads the data from the selected I/O port of the 8255.
A0 and A1
These input signals work with RD, WR, and one of the control signals. Following is the table
showing their various signals with their result.

A1 A0 RD WR CS Result

0 0 0 1 0 Input Operation

PORT A → Data Bus
0 1 0 1 0 PORT B → Data Bus
1 0 0 1 0 PORT C → Data Bus

0 0 1 0 0
Output Operation

Data Bus → PORT A
0 1 1 0 0 Data Bus → PORT A
1 0 1 0 0 Data Bus → PORT B

Operating Modes
1. BSR (bit set-reset) mode-
If MSB of control word (D7) is 0, PPI works in BSR mode. In this mode only port C bits are used
for set or reset.

2. I/O mode-
Mode 0 − In this mode, Port A and B is used as two 8-bit ports and Port C as two 4-bit ports. Each
port can be programmed in either input mode or output mode where outputs are latched and
inputs are not latched. Ports do not have interrupt capability.
Mode 1 − In this mode, Port A and B is used as 8-bit I/O ports. They can be configured as either
input or output ports. Each port uses three lines from port C as handshake signals. Inputs and
outputs are latched.
Mode 2 − In this mode, Port A can be configured as the bidirectional port and Port B either in
Mode 0 or Mode 1. Port A uses five signals from Port C as handshake signals for data transfer. The
remaining three signals from Port C can be used either as simple I/O or as handshake for port B.

Seven segment LED display
A seven-segment LED is a kind of LED (Light Emitting Diode) consisting of 7 small LEDs it usually
comes with the microprocessor’s as we commonly need to interface them with microprocessors
like 8085.

Structure of Seven Segments LED:

 It can be used to represent numbers from 0 to 8 with a decimal point.

 We have eight segments in a Seven Segment LED display consisting of 7 segments which
include ‘.’.

 The seven segments are denoted as “a, b, c, d, e, f, g, h” respectively, and ‘.’ is represented

by “h”.

Interfacing Seven Segment Display with 8085:

We will see a program to Interfacing Seven Segment Display with 8085 using 8255.

Note logic needed for activation –

Common Anode – 0 will make an LED glow.

Common Cathode – 1 will make an LED glow.

Common Anode Method:

Here we are using a common anode display therefore 0 logic is needed to activate the

segment. Suppose to display number 9 at the seven-segment display, therefore the

segments F, G, B, A, C, and D have to be activated.

The instructions to execute it is given as,

 MVI A,99

 OUT 00

 First, we are storing the 99H in the accumulator i.e., 10010000 by using MVI

instruction.

 By OUT instruction we are sending the data stored in the accumulator to the port

00H.

Common Cathode Method:

Here we are using common cathode 1 logic is needed to activate the signal. Suppose to

display number 9 at the seven-segment display, therefore the segments F, G, B, A, C, and

D have to be activated.

The instructions to execute it is given as,

 MVI A,6F

 OUT 00

 First, we are storing the 6FH in the accumulator i.e., 01101111 by using MVI

instruction.

 By OUT instruction we are sending the data stored in the accumulator to the port

00H.

Traffic light controller
The traffic lights are interfaced to Microprocessor system through buffer and ports of

programmable peripheral Interface 8255. So the traffic lights can be automatically

switched ON/OFF in desired sequence. The Interface board has been designed to work

with parallel port of Microprocessor system.

Working Program

Design of a microprocessor system to control traffic lights. The traffic should be

controlled in the following manner.

1) Allow traffic from W to E and E to W transition for 20 seconds.

2) Give transition period of 5 seconds (Yellow bulbs ON)

3) Allow traffic from N to 5 and 5 to N for 20 seconds

4) Give transition period of 5 seconds (Yellow bulbs ON) 5) Repeat the process.

Source Program:

 MVI A, 80H: Initialize 8255, port A and port B

 OUT 83H (CR): in output mode

START: MVI A, 09H

 OUT 80H (PA): Send data on PA to glow R1 and R2

 MVI A, 24H

 OUT 81H (PB): Send data on PB to glow G3 and G4

 MVI C, 28H: Load multiplier count (40ıο) for delay

 CALL DELAY: Call delay subroutine

 MVI A, 12H

OUT (81H) PA: Send data on Port A to glow Y1 and Y2

OUT (81H) PB: Send data on port B to glow Y3 and Y4

MVI C, 0AH: Load multiplier count (10ıο) for delay

CALL: DELAY: Call delay subroutine

MVI A, 24H

OUT (80H) PA: Send data on port A to glow G1 and G2

MVI A, 09H

OUT (81H) PB: Send data on port B to glow R3 and R4

MVI C, 28H: Load multiplier count (40ıο) for delay

CALL DELAY: Call delay subroutine

MVI A, 12H

OUT PA: Send data on port A to glow Y1 and Y2

OUT PB: Send data on port B to glow Y3 and Y4

MVI C, 0AH: Load multiplier count (10ıο) for delay

CALL DELAY: Call delay subroutine

JMP START

Delay Subroutine:

DELAY: LXI D, Count: Load count to give 0.5 sec delay

BACK: DCX D: Decrement counter

MOV A, D

ORA E: Check whether count is 0

JNZ BACK: If not zero, repeat

DCR C: Check if multiplier zero, otherwise repeat

JNZ DELAY

RET: Return to main program

Square wave generator
 With 00H as i/p to DAC, analog o/p is -5V, and with FFH as i/p, analog o/p is +5V.

 I/P 00H and FFH at regular intervals generate square wave.

 The frequency can be varied by varying the time delay.

Algorithm

Initialize the control word of 8255 to operate in I/O mode for port A and B & C to operate

in o/p mode.

Program

 MVI A,80

 OUT CWR initialize the control word

LOOP: MVI A,00

 OUT PA

 CALL DELAY

 MVI A,FF

 OUT PA

 CALL DELAY

 JMP LOOP

DELAY: MVI C,85

BACK: DCR C

 JNZ BACK

 RET

Basic concept of 8257 DMA Controller:

DMA stands for Direct Memory Access. It is designed by Intel to transfer data at the fastest

rate. It allows the device to transfer the data directly to/from memory without any

interference of the CPU.

Using a DMA controller, the device requests the CPU to hold its data, address and control

bus, so the device is free to transfer data directly to/from the memory. The DMA data

transfer is initiated only after receiving HLDA signal from the CPU.

How DMA Operations are Performed?

 Initially, when any device has to send data between the device and the memory,

the device has to send DMA request (DRQ) to DMA controller.

 The DMA controller sends Hold request (HRQ) to the CPU and waits for the CPU to

assert the HLDA.

 Then the microprocessor tri-states all the data bus, address bus, and control bus.

The CPU leaves the control over bus and acknowledges the HOLD request through

HLDA signal.

 Now the CPU is in HOLD state and the DMA controller has to manage the

operations over buses between the CPU, memory, and I/O devices.

Features of 8257:

 It has four channels which can be used over four I/O devices.

 Each channel has 16-bit address and 14-bit counter.

 Each channel can transfer data up to 64kb.

 Each channel can be programmed independently.

 Each channel can perform read transfer, write transfer and verify transfer

operations.

 It generates MARK signal to the peripheral device that 128 bytes have been

transferred.

 It requires a single-phase clock.

 Its frequency ranges from 250Hz to 3MHz.

 It operates in 2 modes, i.e., Master mode and Slave mode.

8251 USART:

 The 8251 chip is Universal Synchronous Asynchronous Receiver Transmitter

(USART). It acts as a mediator between the microprocessor and peripheral

devices. It converts serial data to parallel form and vice versa.

 USART provides the computer with the interface necessary for communication

with modems and other serial devices.

 USART offers the option of synchronous mode. In program-to-program

communication, the synchronous mode requires that each end of an exchange

respond in turn without initiating a new communication.

 Asynchronous operation means that a process operates independently of other

processes.

Difference between synchronous mode and asynchronous mode:

 Synchronous mode requires both data and a clock. Asynchronous mode requires

only data.

 In synchronous mode, the data is transmitted at a fixed rate. In asynchronous

mode, the data does not have to be transmitted at a fixed rate.

 Synchronous data is normally transmitted in the form of blocks, while

asynchronous data is normally transmitted one byte at a time.

 Synchronous mode allows for a higher DTR (data transfer rate) than

asynchronous mode does, if all other factors are held constant.

UNIT-5

8086 Microprocessor

 8086 Microprocessor is an enhanced version of 8085 Microprocessor that was

designed by Intel in 1976.

 It is a 16-bit Microprocessor having 20 address lines and16 data lines that

provides up to 1MB storage.

 It consists of powerful instruction set, which provides operations like

multiplication and division easily.

 It supports two modes of operation, i.e., Maximum mode and Minimum mode.

 Maximum mode is suitable for system having multiple processors and Minimum

mode is suitable for system having a single processor.

Features of 8086

The most prominent features of a 8086 microprocessor are as follows −

 It has an instruction queue, which is capable of storing six instruction bytes from

the memory resulting in faster processing.

 It was the first 16-bit processor having 16-bit ALU, 16-bit registers, internal data

bus, and 16-bit external data bus resulting in faster processing.

 It is available in 3 versions based on the frequency of operation −

8086 → 5MHz

8086-2 → 8MHz

8086-1 → 10 MHz

 It uses two stages of pipelining, i.e., Fetch Stage and Execute Stage, which improves

performance.

 Fetch stage can prefetch up to 6 bytes of instructions and stores them in the queue.

 Execute stage executes these instructions.

 It has 256 vectored interrupts.

 It consists of 29,000 transistors.

Comparison between 8085 & 8086 Microprocessor

 Size − 8085 is 8-bit microprocessor, whereas 8086 is 16-bit microprocessor.

 Address Bus − 8085 has 16-bit address bus while 8086 has 20-bit address bus.

 Memory − 8085 can access up to 64Kb, whereas 8086 can access up to 1 Mb of

memory.

 Instruction − 8085 doesn’t have an instruction queue, whereas 8086 has an

instruction queue.

 Pipelining − 8085 doesn’t support a pipelined architecture while 8086 supports a

pipelined architecture.

 I/O − 8085 can address 2^8 = 256 I/O's, whereas 8086 can access 2^16 = 65,536

I/O's.

 Cost − The cost of 8085 is low whereas that of 8086 is high.

Register organization of 8086 Microprocessor:

1. General 16-bit registers

The registers AX, BX, CX, and DX are the general 16-bit registers.

AX Register: Accumulator register consists of two 8-bit registers AL and AH, which can be

combined together and used as a 16- bit register AX. AL in this case contains the low order

byte of the word, and AH contains the high-order byte. Accumulator can be used for I/O

operations, rotate and string manipulation.

BX Register: This register is mainly used as a base register. It holds the starting base

location of a memory region within a data segment. It is used as offset storage for forming

physical address in case of certain addressing mode.

CX Register: It is used as default counter or count register in case of string and loop

instructions.

DX Register: Data register can be used as a port number in I/O operations and implicit

operand or destination in case of few instructions. In integer 32-bit multiply and divide

instruction the DX register contains high-order word of the initial or resulting number.

2. Segment registers:

To complete 1Mbyte memory is divided into 16 logical segments. Each segment contains

64Kbyte of memory. There are four segment registers.

Code segment (CS) is a 16-bit register containing address of 64 KB segment with

processor instructions. The processor uses CS segment for all accesses to instructions

referenced by instruction pointer (IP) register. CS register cannot be changed directly.

The CS register is automatically updated during far jump, far call and far return

instructions. It is used for addressing a memory location in the code segment of the

memory, where the executable program is stored.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program

stack. By default, the processor assumes that all data referenced by the stack pointer (SP)

and base pointer (BP) registers is located in the stack segment. SS register can be changed

directly using POP instruction. It is used for addressing stack segment of memory. The

stack segment is that segment of memory, which is used to store stack data.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program

data. By default, the processor assumes that all data referenced by general registers (AX,

BX, CX, DX) and index register (SI, DI) is located in the data segment. DS register can be

changed directly using POP and LDS instructions. It points to the data segment memory

where the data is resided.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with

program data. By default, the processor assumes that the DI register references the ES

segment in string manipulation instructions. ES register can be changed directly using

POP and LES instructions. It also refers to segment which essentially is another data

segment of the memory. It also contains data.

3. Pointers and index registers.

The pointers contain within the particular segments. The pointers IP, BP, SP usually

contain offsets within the code, data and stack segments respectively

Stack Pointer (SP) is a 16-bit register pointing to program stack in stack segment.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is

usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data addresses in string manipulation

instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and

register indirect addressing, as well as a destination data address in string manipulation

instructions.

4. Flags: 8086 Microprocessor has 16-bit flag resister which is divided into two

parts: Conditional flag (status flag) and Control flag.

Conditional Flags:

Carry Flag (CY): This flag indicates an overflow condition for unsigned integer arithmetic.

It is also used in multiple-precision arithmetic.

Auxiliary Flag (AC): If an operation performed in ALU generates a carry/barrow from

lower nibble (i.e., D0 – D3) to upper nibble (i.e., D4 – D7), the AC flag is set i.e., carry given

by D3 bit to D4 is AC flag. This is not a general-purpose flag; it is used internally by the

Processor to perform Binary to BCD conversion.

Parity Flag (PF): This flag is used to indicate the parity of result. If lower order 8-bits of

the result contains even number of 1’s, the Parity Flag is set and for odd number of 1’s,

the Parity flag is reset.

Zero Flag (ZF): It is set; if the result of arithmetic or logical operation is zero else it is

reset.

Sign Flag (SF): In sign magnitude format the sign of number is indicated by MSB bit. If

the result of operation is negative, sign flag is set.

Control Flags:

Control flags are set or reset deliberately to control the operations of the execution unit.

Control flags are as follows:

Trap Flag (TF): It is used for single step control. It allows user to execute one instruction

of a program at a time for debugging. When trap flag is set, program can be run in single

step mode.

Interrupt Flag (IF): It is an interrupt enable/disable flag. If it is set, the maskable interrupt

of 8086 is enabled and if it is reset, the interrupt is disabled. It can be set by executing

instruction sit and can be cleared by executing CLI instruction.

Direction Flag (DF): It is used in string operation. If it is set, string bytes are accessed from

higher memory address to lower memory address. When it is reset, the string bytes are

accessed from lower memory address to higher memory address.

Internal architecture of 8086 Microprocessor:

The internal architecture of Intel 8086 is divided into 2 units: The Bus Interface Unit

(BIU), and The Execution Unit (EU).

1. The Bus Interface Unit (BIU):

It provides the interface of 8086 to external memory and I/O devices via the System Bus.

It performs various machine cycles such as memory read, I/O read etc. to transfer data

between memory and I/O devices.

BIU performs the following functions-

 It generates the 20-bit physical address for memory access.

 It fetches instructions from the memory.

 It transfers data to and from the memory and I/O.

 Maintains the 6-byte prefetch instruction queue (supports pipelining).

 BIU mainly contains the 4 Segment registers, the Instruction Pointer, a prefetch

queue and an Address Generation Circuit.

Address of the next instruction is calculated as CS x 10H + IP.

Example:

CS = 4321H IP = 1000H

then CS x 10H = 43210H + offset = 44210H

This is the address of the instruction.

Address Generation Circuit:

The BIU has a Physical Address Generation Circuit.

It generates the 20-bit physical address using Segment and Offset addresses using the

formula:

Physical Address = Segment Address x 10H + Offset Address

6-Byte Pre-fetch Queue:

It is a 6-byte queue (FIFO). Fetching the next instruction (by BIU from CS) while executing

the current instruction is called pipelining.

2. The Execution Unit (EU):

The main components of the EU are General purpose registers, the ALU, Special purpose

registers, Instruction Register and Instruction Decoder and the Flag/Status Register.

 Fetches instructions from the Queue in BIU, decodes and executes arithmetic and

logic operations using the ALU.

 Sends control signals for internal data transfer operations within the

microprocessor.

 Sends request signals to the BIU to access the external module.

 It operates with respect to T-states (clock cycles) and not machine cycles.

Arithmetic Logic Unit (16 bit):

Performs 8 and 16 bit arithmetic and logic operations.

Instruction Register and Instruction Decoder:

The EU fetches an opcode from the queue into the instruction register. The instruction

decoder decodes it and sends the information to the control circuit for execution.

Execution of whole 8086 Architecture:

 All instructions are stored in memory hence to fetch any instruction first task is to

obtain the Physical address of the instruction is to be fetched. Hence this task is

done by Bus Interface Unit (BIU) and by Segment Registers. Suppose the Code

segment has a Segment address and the Instruction pointer has some offset

address then the physical address calculator circuit calculates the physical

address in which our instruction is to be fetched.

 After address calculation instruction is fetched from memory and it passes

through C-Bus (Data bus) as shown in the figure, and according to the size of the

instruction, the instruction pre-fetch queue fills up. For example MOV AX, BX is 1

Byte instruction so it will take only the 1st block of the queue, and MOV BX,4050H

is 3 Byte instruction so it will take 3 blocks of the pre-fetch queue.

 When our instruction is ready for execution, according to the FIFO property of the

queue instruction comes into the control system or control circuit which resides

in the Execution unit. Here instruction decoding takes place. The decoding control

system generates an opcode that tells the microprocessor unit which operation is

to be performed. So the control system sends signals all over the microprocessor

about what to perform and what to extract from General and special Purpose

Registers.

 Hence After decoding microprocessor fetches data from GPR and according to

instructions like ADD, SUB, MUL, and DIV data residing in GPRs are fetched and

put as ALU’s input. and after that addition, multiplication, division, or subtraction

whichever calculation is to be carried out.

 According to arithmetic, flag register values change dynamically.

 While Instruction was decoding and executing from step-3 of our algorithm, the

Bus interface Unit doesn’t remain idle. it continuously fetches an instruction from

memory and put it in a pre-fetch queue and gets ready for execution in a FIFO

manner whenever the time arrives.

 So, in this way, unlike the 8085 microprocessor, here the Fetch, Decode, and

Execution process happens parallelly not sequentially. This is called pipelining,

and because of the instruction prefetch queue, all fetching, decoding, and

execution process happen side-by-side. Hence there is partitioning in 8086

architecture like Bus Interface Unit and Execution Unit to support Pipelining

phenomena.

8086 Pin Configuration:

8086 was the first 16-bit microprocessor available in 40-pin DIP (Dual Inline

Package) chip.

The 8086 uses 20-line address bus.

It has a 16-line data bus.

The 20 lines of the address bus operate in multiplexed mode.

The 16-low order address bus lines have been multiplexed with data and 4 high-order

address bus lines have been multiplexed with status signals.

AD0-AD15: Address/Data bus. These are low order address bus. They are multiplexed

with data. When AD lines are used to transmit memory address the symbol A is used

instead of AD, for example A0-A15. When data are transmitted over AD lines the

symbol D is used in place of AD, for example D0-D7, D8-D15 or D0-D15.

A16-A19: High order address bus. These are multiplexed with status signals.

S2, S1, S0: Status pins. These pins are active during T4, T1 and T2 states and is

returned to passive state (1,1,1 during T3 or Tw (when ready is inactive). These are

used by the 8288 bus controller for generating all the memory and I/O operation)

access control signals. Any change in S2, S1, S0 during T4 indicates the beginning of a

bus cycle.

S2 S1 S0 Characteristics

0 0 0 Interrupt acknowledge
0 0 1 Read I/O port
0 1 0 Write I/O port
0 1 1 Halt
1 0 0 Code access
1 0 1 Read memory
1 1 0 Write memory
1 1 1 Passive

A16/S3, A17/S4, A18/S5, A19/S6: The specified address lines are multiplexed with

corresponding status signals.

A17/S4 A16/S3 Function

0 0 Extra segment access
0 1 Stack segment access
1 0 Code segment access
1 1 Data segment access

BHE’/S7: Bus High Enable/Status. During T1 it is low. It is used to enable data onto

the most significant half of data bus, D8-D15. 8-bit device connected to upper half of

the data bus use BHE (Active Low) signal. It is multiplexed with status signal S7. S7

signal is available during T2, T3 and T4.

RD’: This is used for read operation. It is an output signal. It is active when low.

READY: This is the acknowledgement from the memory or slow device that they have

completed the data transfer. The signal made available by the devices is synchronized

by the 8284A clock generator to provide ready input to the microprocessor. The signal

is active high(1).

INTR: Interrupt Request. This is triggered input. This is sampled during the last clock

cycles of each instruction for determining the availability of the request. If any

interrupt request is found pending, the processor enters the interrupt acknowledge

cycle. This can be internally masked after resulting the interrupt enable flag. This

signal is active high(1) and has been synchronized internally.

NMI: Non maskable interrupt. This is an edge triggered input which results in a type

II interrupt. A subroutine is then vectored through an interrupt vector lookup table

which is located in the system memory. NMI is non-maskable internally by software.

A transition made from low(0) to high(1) initiates the interrupt at the end of the

current instruction. This input has been synchronized internally.

INTA: Interrupt acknowledge. It is active low(0) during T2, T3 and Tw of each

interrupt acknowledge cycle.

MN/MX’: Minimum/Maximum. This pin signal indicates what mode the processor will

operate in.

RQ’/GT1′, RQ’/GT0′: Request/Grant. These pins are used by local bus masters used to

force the microprocessor to release the local bus at the end of the microprocessor’s

current bus cycle. Each of the pin is bi-directional. RQ’/GT0′ have higher priority than

RQ’/GT1′.

LOCK’: Its an active low pin. It indicates that other system bus masters have not been

allowed to gain control of the system bus while LOCK’ is active low(0). The LOCK

signal will be active until the completion of the next instruction.

TEST’: This examined by a ‘WAIT’ instruction. If the TEST pin goes low(0), execution

will continue, else the processor remains in an idle state. The input is internally

synchronized during each of the clock cycle on leading edge of the clock.

CLK: Clock Input. The clock input provides the basic timing for processing operation

and bus control activity. Its an asymmetric square wave with a 33% duty cycle.

RESET: This pin requires the microprocessor to terminate its present activity

immediately. The signal must be active high (1) for at least four clock cycles.

Vcc: Power Supply (+5V D.C.)

GND: Ground

QS1, QS0: Queue Status. These signals indicate the status of the internal 8086

instruction queue according to the table shown below

QS1 QS0 Status

0 0 No operation

0 1
First byte of op code from
queue

1 0 Empty the queue

1 1
Subsequent byte from
queue

DT/R: Data Transmit/Receive. This pin is required in minimum systems, that want to use

an 8286 or 8287 data bus transceiver. The direction of data flow is controlled through

the transceiver.

DEN: Data enable. This pin is provided as an output enable for the 8286/8287 in a

minimum system which uses transceiver. DEN is active low(0) during each memory and

input-output access and for INTA cycles.

HOLD/HLDA: HOLD indicates that another master has been requesting a local bus. This

is an active high (1). The microprocessor receiving the HOLD request will issue HLDA

(high) as an acknowledgement in the middle of a T4 or T1 clock cycle.

ALE: Address Latch Enable. ALE is provided by the microprocessor to latch the address

into the 8282 or 8283 address latch. It is an active high (1) pulse during T1 of any bus

cycle. ALE signal is never floated, is always integer.

Memory Segmentation:

Segmentation is the process in which the main memory of the computer is logically

divided into different segments and each segment has its own base address. It is basically

used to enhance the speed of execution of the computer system, so that the processor is

able to fetch and execute the data from the memory easily and fast.

Rules of Segmentation:

 Segmentation process follows some rules as follows:

 The starting address of a segment should be such that it can be evenly divided by

16.

 Minimum size of a segment can be 16 bytes and the maximum can be 64 kB.

Maximum mode configuration of 8086:

 In this we can connect more processors to 8086 (8087/8089).

 8086 max mode is basically for implementation of allocation of global

resources and passing bus control to other coprocessor (i.e., second processor

in the system), because two processors cannot access system bus at same

instant.

 All processors execute their own program.

 The resources which are common to all processors are known as global

resources.

 The resources which are allocated to a particular processor are known as local

or private resources.

 When MN/ MX’ = 0 , 8086 works in max mode.

 Clock is provided by 8284 clock generator.

 8288 bus controller- Address form the address bus is latched into 8282 8-bit

latch. Three such latches are required because address bus is 20 bit. The ALE

(Address latch enable) is connected to STB(Strobe) of the latch. The ALE for

latch is given by 8288 bus controller.

 The data bus is operated through 8286 8-bit transceiver. Two such

transceivers are required, because data bus is 16-bit. The transceivers are

enabled the DEN signal, while the direction of data is controlled by the DT/R

signal. DEN is connected to OE’ and DT/ R’ is connected to T. Both DEN and

DT/ R’ are given by 8288 bus controller.

 Bus request is done using RQ’ / GT’ lines interfaced with 8086. RQ0/GT0 has

more priority than RQ1/GT1.

 INTA’ is given by 8288, in response to an interrupt on INTR line of 8086.

 In max mode, the advanced write signals get enabled one T-state in advance as

compared to normal write signals. This gives slower devices more time to get

ready to accept the data, therefore it reduces the number of cycles.

Advantages of max mode of 8086:

 It helps to interface more devices like 8087.This interface is also called a

closely coupled co-Processor configuration. In this 8086 is called as the host

and 8087 as Co-processor.

 It supports multiprocessing; Therefore, it helps to increase the efficiency.

 The 8087 was the first floating-point coprocessor for the 8086 series of

microprocessors. The purpose of the 8087 was to increase calculations for

floating point operations, such as add, sub, multiply, divide, and square root.

Disadvantages of max mode over min mode:

 It has more complex circuit than min mode.

Minimum mode configuration of 8086:

 The 8086 microprocessor operates in minimum mode when MN/MX’ = 1.

 In minimum mode,8086 is the only processor in the system which provides all

the control signals which are needed for memory operations and I/O

interfacing.

 Here the circuit is simple but it does not support multiprocessing.

 The other components which are transceivers, latches, 8284 clock generator,

74138 decoder, memory and i/o devices are also present in the system.

 8282 is 8-bit latch used to separate the valid address from the multiplexed

Address/data bus by using the control signal ALE, which is connected to strobe

(STB) of 8282.

 8286 is 8-bit transceivers. They are bidirectional buffers and also known as

data amplifiers. They are used to separate the valid data from multiplexed

add/data bus.

 8284 clock generator is used to provide the clock.

 M/IO’= 1, then I/O transfer is performed over the bus. and when M/IO’ = 0,

then I/O operation is performed.

 The signals RD’ and write WR’ are used to identify whether a read bus cycle or

a write bus cycle is performing. When WR’ = 0, then it indicates that valid

output data on the data bus.

 RD’ indicates that the 8086 is performing a read data or instruction fetch

process is occurring. During read operations, one other control signal is also

used, which is DEN (data enable) and it indicates the external devices when

they should put data on the bus.

 Control signals for all operations are generated by decoding M/IO’, RD’, WR’.

They are decoded by 74138 3:8 decoder.

Memory read cycle:

Interrupts in 8086:

 While the CPU is executing a program, an interrupt breaks the normal execution of

instructions, diverts its execution to some other program called Interrupt Service Routine (ISR)

 Whenever an interrupt occurs the processor completes the execution of the current

instruction and starts the execution of an Interrupt Service Routine (ISR) or Interrupt Handler.

 ISR is a program that tells the processor what to do when the interrupt occurs. At the end of

the ISR the last instruction should be IRET.

 After the execution of ISR, control returns back to the main routine where it was interrupted.

 Whenever a number of devices interrupt a CPU at a time, and if the processor is able to handle

them properly, it is said to have multiple interrupt processing capability.

Need for Interrupt: Interrupts are particularly useful when interfacing I/O devices that provide

or require data at relatively low data transfer rate.

Types of interrupts:

Hardware Interrupts:

Hardware interrupt is caused by any peripheral device by sending a signal through

a specified pin to the microprocessor.

The 8086 has two hardware interrupt pins, i.e., NMI and INTR. NMI is a non-

maskable interrupt and INTR is a maskable interrupt having lower priority. One

more interrupt pin associated is INTA called interrupt acknowledge.

NMI:

It is a single non-maskable interrupt pin (NMI) having higher priority than the

maskable interrupt request pin (INTR)and it is of type 2 interrupt.

When this interrupt is activated, these actions take place −

 Completes the current instruction that is in progress.

 Pushes the Flag register values on to the stack.

 Pushes the CS (code segment) value and IP (instruction pointer) value of the

return address on to the stack.

 IP is loaded from the contents of the word location 00008H.

 CS is loaded from the contents of the next word location 0000AH.

 Interrupt flag and trap flag are reset to 0.

INTR:

The INTR is a maskable interrupt because the microprocessor will be interrupted

only if interrupts are enabled using set interrupt flag instruction. It should not be

enabled using clear interrupt Flag instruction.

Software Interrupts:

Some instructions are inserted at the desired position into the program to create

interrupts. These interrupt instructions can be used to test the working of various

interrupt handlers. It includes −

INT- Interrupt instruction with type number. It is 2-byte instruction. First byte

provides the op-code and the second byte provides the interrupt type number.

There are 256 interrupt types under this group.

Its execution includes the following steps −

 Flag register value is pushed on to the stack.

 CS value of the return address and IP value of the return address are pushed on to

the stack.

 IP is loaded from the contents of the word location ‘type number’ × 4

 CS is loaded from the contents of the next word location.

 Interrupt Flag and Trap Flag are reset to 0

The starting address for type 0 interrupt is 000000H, for type 1 interrupt is 00004H

similarly for type2 is 00008H and ……so on. The first five pointers are dedicated interrupt

pointers. i.e. −

 TYPE 0 interrupt represents division by zero situation.

 TYPE 1 interrupt represents single-step execution during the debugging of a

program.

 TYPE 2 interrupt represents non-maskable NMI interrupt.

 TYPE 3 interrupt represents break-point interrupt.

 TYPE 4 interrupt represents overflow interrupt.

 The interrupts from Type 5 to Type 31 are reserved for other advanced

microprocessors, and interrupts from 32 to Type 255 are available for hardware

and software interrupts.

Instruction Set of 8086:

Instructions are classified on the basis of functions they perform. They are categorized

into the following main types:

Data Transfer instruction:

All the instructions which perform data movement come under this category. The source

data may be a register, memory location, port etc. the destination may be a register,

memory location or port.

Instruction Description

MOV Moves data from register to register, register to memory, memory to register, memory to
accumulator, accumulator to memory, etc.

LDS Loads a word from the specified memory locations into specified register. It also loads a
word from the next two memory locations into DS register.

LES Loads a word from the specified memory locations into the specified register. It also loads
a word from next two memory locations into ES register.

LEA Loads offset address into the specified register.

LAHF Loads low order 8-bits of the flag register into AH register.

SAHF Stores the content of AH register into low order bits of the flags register.

XLAT/XLATB Reads a byte from the lookup table.

XCHG Exchanges the contents of the 16-bit or 8-bit specified register with the contents of AX
register, specified register or memory locations.

PUSH Pushes (sends, writes or moves) the content of a specified register or memory location(s)
onto the top of the stack.

POP Pops (reads) two bytes from the top of the stack and keeps them in a specified register, or
memory location(s).

POPF Pops (reads) two bytes from the top of the stack and keeps them in the flag register.

IN Transfers data from a port to the accumulator or AX, DX or AL register.

OUT Transfers data from accumulator or AL or AX register to an I/O port identified by the
second byte of the instruction.

Arithmetic Instructions:

Instructions of this group perform addition, subtraction, multiplication, division,

increment, decrement, comparison, ASCII and decimal adjustment etc.

Instruction Description

ADD Adds data to the accumulator i.e. AL or AX register or memory locations.

ADC Adds specified operands and the carry status (i.e. carry of the previous stage).

SUB Subtract immediate data from accumulator, memory or register.

SBB Subtract immediate data with borrow from accumulator, memory or register.

MUL Unsigned 8-bit or 16-bit multiplication.

IMUL Signed 8-bit or 16-bit multiplication.

DIV Unsigned 8-bit or 16-bit division.

IDIV Signed 8-bit or 16-bit division.

INC Increment Register or memory by 1.

DEC Decrement register or memory by 1.

DAA Decimal Adjust after BCD Addition: When two BCD numbers are added, the DAA is used
after ADD or ADC instruction to get correct answer in BCD.

DAS Decimal Adjust after BCD Subtraction: When two BCD numbers are added, the DAS is
used after SUB or SBB instruction to get correct answer in BCD.

AAA ASCII Adjust for Addition: When ASCII codes of two decimal digits are added, the AAA is
used after addition to get correct answer in unpacked BCD.

AAD Adjust AX Register for Division: It converts two unpacked BCD digits in AX to the
equivalent binary number. This adjustment is done before dividing two unpacked BCD
digits in AX by an unpacked BCD byte.

AAM Adjust result of BCD Multiplication: This instruction is used after the multiplication of
two unpacked BCD.

AAS ASCII Adjust for Subtraction: This instruction is used to get the correct result in
unpacked BCD after the subtraction of the ASCII code of a number from ASCII code
another number.

CBW Convert signed Byte to signed Word.

CWD Convert signed Word to signed Doubleword.

NEG Obtains 2's complement (i.e. negative) of the content of an 8-bit or 16-bit specified
register or memory location(s).

CMP Compare Immediate data, register or memory with accumulator, register or memory
location(s).

Logical Instructions

Instruction of this group perform logical AND, OR, XOR, NOT and TEST operations.

Instruction Description

AND Performs bit by bit logical AND operation of two operands and places the result in the
specified destination.

OR Performs bit by bit logical OR operation of two operands and places the result in the
specified destination.

XOR Performs bit by bit logical XOR operation of two operands and places the result in the
specified destination.

NOT Takes one's complement of the content of a specified register or memory location(s).

TEST Perform logical AND operation of a specified operand with another specified operand.

Rotate Instructions

Instruction Description

RCL Rotate all bits of the operand left by specified number of bits through carry flag.

RCR Rotate all bits of the operand right by specified number of bits through carry flag.

ROL Rotate all bits of the operand left by specified number of bits.

ROR Rotate all bits of the operand right by specified number of bits.

Shift instructions

Instruction Description

SAL or SHL Shifts each bit of operand left by specified number of bits and put zero in LSB
position.

SAR Shift each bit of any operand right by specified number of bits. Copy old MSB into
new MSB.

SHR Shift each bit of operand right by specified number of bits and put zero in MSB
position.

Branch Instructions:

It is also called program execution transfer instruction. Instructions of this group transfer

program execution from the normal sequence of instructions to the specified destination

or target.

Instruction Description

JA or JNBE Jump if above, not below, or equal i.e. when CF and ZF = 0

JAE/JNB/JNC Jump if above, not below, equal or no carry i.e. when CF = 0

JB/JNAE/JC Jump if below, not above, equal or carry i.e. when CF = 0

JBE/JNA Jump if below, not above, or equal i.e. when CF and ZF = 1

JCXZ Jump if CX register = 0

JE/JZ Jump if zero or equal i.e. when ZF = 1

JG/JNLE Jump if greater, not less or equal i.e. when ZF = 0 and CF = OF

JGE/JNL Jump if greater, not less or equal i.e. when SF = OF

JL/JNGE Jump if less, not greater than or equal i.e. when SF ≠ OF

JLE/JNG Jump if less, equal or not greater i.e. when ZF = 1 and SF ≠ OF

JMP Causes the program execution to jump unconditionally to the memory address or

label given in the instruction.

CALL Calls a procedure whose address is given in the instruction and saves their return

address to the stack.

RET Returns program execution from a procedure (subroutine) to the next instruction

or main program.

IRET Returns program execution from an interrupt service procedure (subroutine) to

the main program.

INT Used to generate software interrupt at the desired point in a program.

INTO Software interrupts to indicate overflow after arithmetic operation.

LOOP Jump to defined label until CX = 0.

LOOPZ/LOOPE Decrement CX register and jump if CX ≠ 0 and ZF = 1.

LOOPNZ/LOOPNE Decrement CX register and jump if CX ≠ 0 and ZF = 0.

Flag Manipulation and Processor Control Instructions:

Instructions of this instruction set are related to flag manipulation and machine control.

Instruction Description

CLC Clear Carry Flag: This instruction resets the carry flag CF to 0.

CLD Clear Direction Flag: This instruction resets the direction flag DF to 0.

CLI Clear Interrupt Flag: This instruction resets the interrupt flag IF to 0.

CMC This instruction take complement of carry flag CF.

STC Set carry flag CF to 1.

STD Set direction flag to 1.

STI Set interrupt flag IF to 1.

HLT Halt processing. It stops program execution.

NOP Performs no operation.

ESC Escape: makes bus free for external master like a coprocessor or peripheral device.

WAIT When WAIT instruction is executed, the processor enters an idle state in which the
processor does no processing.

LOCK It is a prefix instruction. It makes the LOCK pin low till the execution of the next
instruction.

String Instructions:

String is series of bytes or series of words stored in sequential memory locations. The

8086 provides some instructions which handle string operations such as string

movement, comparison, scan, load and store.

Instruction Description

MOVS/MOVSB/MOVSW Moves 8-bit or 16-bit data from the memory location(s) addressed by SI
register to the memory location addressed by DI register.

CMPS/CMPSB/CMPSW Compares the content of memory location addressed by DI register with the
content of memory location addressed by SI register.

SCAS/SCASB/SCASW Compares the content of accumulator with the content of memory location
addressed by DI register in the extra segment ES.

LODS/LODSB/LODSW Loads 8-bit or 16-bit data from memory location addressed by SI register into
AL or AX register.

STOS/STOSB/STOSW Stores 8-bit or 16-bit data from AL or AX register in the memory location
addressed by DI register.

REP Repeats the given instruction until CX ≠ 0

REPE/ REPZ Repeats the given instruction till CX ≠ 0 and ZF = 1

REPNE/REPNZ Repeats the given instruction till CX ≠ 0 and ZF = 0

Addressing Mode:

Addressing modes are different ways by which CPU can access data or operands. They

determine how to access a specific memory address.

Register addressing mode:

This mode involves the use of registers. These registers hold the operands. This mode is

very fast as compared to others because CPU doesn’t need to access memory. CPU can

directly perform an operation through registers.

MOV AX, BL

MOV AL, BL

Immediate Addressing Mode:

In this mode, there are two operands. One is a register and the other is a constant value.

For example:

The instruction MOV AX, 30H copies hexadecimal value 30H to register AX.

The instructions MOV BX, 255 copies decimal value 255 to register BX.

Immediate addressing mode is not used to load immediate value into segment registers.

To move any value into segment registers, first load that value into a general-purpose

register then add this value into segment register.

Direct Addressing Mode:

It loads or stores the data from memory to register and vice versa. The instruction

consists of a register and an offset address. To compute physical address, shift left the DS

register and add the offset address into it.

MOV CX, [481]

Register Indirect Addressing Mode:

The register indirect addressing mode uses the offset address which resides in one of

these three registers i.e., BX, SI, DI. The sum of offset address and the DS value shifted by

one position generates a physical address.

MOV AL, [SI]

Based Relative Addressing Mode:

This addressing mode uses a base register either BX or BP and a displacement value to

calculate physical address.

MOV [BX+5], DX

Indexed Relative Addressing Mode:

This addressing mode is same as the based relative addressing mode. The only difference

is it uses DI and SI registers instead of BX and BP registers.

MOV [DI]+12, AL

MOV BX, [SI]+10

Based Indexed Addressing Mode:

The based indexed addressing mode is actually a combination of based relative

addressing mode and indexed relative addressing mode. It uses one base register (BX,

BP) and one index register (SI, DI).

MOV AX, [BX+SI+20]

Or MOV AX, [SI][BX]+20

Assembly language program:

Addition

ORG 0000H

MOV DX, #07H // move the value 7 to the register AX//

MOV AX, #09H // move the value 9 to accumulator AX//

ADD AX, DX // add AX value with DX value and stores the result in AX//

END

Multiplication

ORG 0000H

MOV DX, #04H // move the value 4 to the register DX//

MOV AX, #08H // move the value 8 to accumulator AX//

MUL AX, DX // Multiplied result is stored in the Accumulator AX //

END

Subtraction

ORG 0000H

MOV DX, #02H // move the value 2 to register DX//

MOV AX, #08H // move the value 8 to accumulator AX//

SUBB AX, DX // Result value is stored in the Accumulator A X//

END

Division

ORG 0000H

MOV DX, #08H // move the value 3 to register DX//

MOV AX, #19H // move the value 5 to accumulator AX//

DIV AX, DX // final value is stored in the Accumulator AX //

END

Largest number:

 MOV SI, 500 //SI<-500//

 MOV CL, [SI] //CL<-[SI]//

 MOV CH, 00 //CH<-00//

 INC SI //SI<-SI+1//

 MOV AL, [SI] //AL<-[SI]//

 DEC CL //CL<-CL-1//

 INC SI //SI<-SI+1//

BACK: CMP AL, [SI] //AL-[SI]//

 JNC HEAD //JUMP TO LOOP IF CY=0//

 MOV AL, [SI] //AL<-[SI]//

HEAD: INC SI //SI<-SI+1//

 LOOP BACK //CX<-CX-1 & JUMP TO BACK IF CX NOT 0//

 MOV [600], AL //AL->[600]//

 HLT

Ascending order:

 MOV SI, 500 SI<-500

 MOV CL, [SI] CL<-[SI]

 DEC CL CL<-CL-1

LEAD: MOV SI, 500 SI<-500

 MOV CH, [SI] CH<-[SI]

 DEC CH CH<-CH-1

 INC SI SI<-SI+1

BACK: MOV AL, [SI] AL<-[SI]

 INC SI SI<-SI+1

 CMP AL, [SI] AL-[SI]

 JC HEAD JUMP TO 41C IF CY=1

 XCHG AL, [SI] SWAP AL AND [SI]

 DEC SI SI<-SI-1

 XCHG AL, [SI] SWAP AL AND [SI]

 INC SI SI<-SI+1

HEAD: DEC CH CH<-CH-1

 JNZ BACK JUMP TO 40F IF ZF=0

 DEC CL CL<-CL-1

 JNZ LEAD JUMP TO 407 IF ZF=0

 HLT END

8051 Microcontroller
In 1981, Intel introduced an 8-bit microcontroller called the 8051. It was referred as

system on a chip because it had 128 bytes of RAM, 4K byte of on-chip ROM, two timers,

one serial port, and 4 ports (8-bit wide), all on a single chip.

Comparison between 8051 Family Members:

The following table compares the features available in 8051, 8052, and 8031.

Feature 8051 8052 8031
ROM(bytes) 4K 8K 0K
RAM(bytes) 128 256 128
Timers 2 3 2
I/O pins 32 32 32
Serial port 1 1 1
Interrupt sources 6 8 6

Features of 8051 Microcontroller

An 8051 microcontroller comes bundled with the following features −

 4KB bytes on-chip program memory (ROM)

 128 bytes on-chip data memory (RAM)

 Four register banks

 128 user defined software flags

 8-bit bidirectional data bus

 16-bit unidirectional address bus

 32 general purpose registers each of 8-bit

 Two 16-bit Timers

 Three internal and two external Interrupts

 Four 8-bit port

 16-bit program counter and data pointer

Architecture of 8051:

CPU (Central Processing Unit): CPU act as a mind of any processing machine. It

synchronizes and manages all processes that are carried out in microcontroller. User has

no power to control the functioning of CPU. It interprets the program stored in ROM and

carries out from storage and then performs it projected duty. CPU manage the different

types of registers available in 8051 microcontroller.

Interrupts: Interrupts is a sub-routine call that given by the microcontroller when some

other program with high priority is request for acquiring the system buses the n

interrupts occur in current running program.

Interrupts provide a method to postpone or delay the current process, performs a sub-

routine task and then restart the standard program again.

Types of interrupt in 8051 Microcontroller:

The five sources of interrupts in 8051 Microcontroller:

Timer 0 overflow interrupt - TF0

Timer 1 overflow interrupt - TF1

External hardware interrupt - INT0

External hardware interrupt - INT1

Serial communication interrupt - RI/TI

Memory: For operation Micro-controller required a program. This program guides the

microcontroller to perform the specific tasks. This program installed in microcontroller

required some on chip memory for the storage of the program.

Microcontroller also required memory for storage of data and operands for the short

duration. In microcontroller 8051 there is code or program memory of 4 KB that is it has

4 KB ROM and it also comprise of data memory (RAM) of 128 bytes.

Bus : Bus is a group of wires which uses as a communication canal or acts as means of

data transfer. The different bus configuration includes 8, 16 or more cables. Therefore, a

bus can bear 8 bits, 16 bits all together.

Types of buses in 8051 Microcontroller:

The two types of bus used in 8051 microcontroller:

Address Bus: 8051 microcontroller consist of 16-bit address bus. It is generally be used

for transferring the data from Central Processing Unit to Memory.

Data bus: 8051 microcontroller is consisting of 8 bits data bus. It is generally be used for

transferring the data from one peripherals position to other peripherals.

Oscillator: As the microcontroller is digital circuit therefore it needs timer for their

operation. To perform timer operation inside microcontroller it required externally

connected or on-chip oscillator. Microcontroller is used inside an embedded system for

managing the function of devices. Therefore, 8051 uses the two 16-bit counters and

timers. For the operation of this timers and counters the oscillator is used inside

microcontroller.

Pin configuration of 8051:

Pins 1 to 8 − These pins are known as Port 1. This port doesn’t serve any other functions.
It is internally pulled up, bi-directional I/O port.
Pin 9 − It is a RESET pin, which is used to reset the microcontroller to its initial values.
Pins 10 to 17 − These pins are known as Port 3. This port serves some functions like
interrupts, timer input, control signals, serial communication signals RxD and TxD, etc.
Pins 18 & 19 − These pins are used for interfacing an external crystal to get the system
clock.
Pin 20 − This pin provides the power supply to the circuit.
Pins 21 to 28 − These pins are known as Port 2. It serves as I/O port. Higher order
address bus signals are also multiplexed using this port.
Pin 29 − This is PSEN pin which stands for Program Store Enable. It is used to read a
signal from the external program memory.
Pin 30 − This is EA pin which stands for External Access input. It is used to enable/disable
the external memory interfacing.
Pin 31 − This is ALE pin which stands for Address Latch Enable. It is used to demultiplex
the address-data signal of port.
Pins 32 to 39 − These pins are known as Port 0. It serves as I/O port. Lower order
address and data bus signals are multiplexed using this port.
Pin 40 − This pin is used to provide power supply to the circuit.

8051 I/O ports:

8051 microcontrollers have 4 I/O ports each of 8-bit, which can be configured as input or

output. Hence, total 32 input/output pins allow the microcontroller to be connected with

the peripheral devices.

The pins can be configured as 1 for input and 0 for output as per the logic state.

Port 0 − The P0 (zero) port is characterized by two functions −

When the external memory is used then the lower address byte (addresses A0-A7) is

applied on it, else all bits of this port are configured as input/output.

When P0 port is configured as an output then other ports consisting of pins with built-in

pull-up resistor connected by its end to 5V power supply, the pins of this port have this

resistor left out.

Port 1

P1 is a true I/O port as it doesn’t have any alternative functions as in P0, but this port can

be configured as general I/O only. It has a built-in pull-up resistor and is completely

compatible with TTL circuits.

Port 2

P2 is similar to P0 when the external memory is used. Pins of this port occupy addresses

intended for the external memory chip. This port can be used for higher address byte with

addresses A8-A15. When no memory is added then this port can be used as a general

input/output port similar to Port 1.

Port 3

In this port, functions are similar to other ports except that the logic 1 must be applied to

appropriate bit of the P3 register.

8051 memory organization (RAM organisation):

The 8051 Microcontroller Memory is separated in Program Memory (ROM) and Data

Memory (RAM). The Program Memory of the 8051 Microcontroller is used for storing the

program to be executed i.e., instructions. The Data Memory on the other hand, is used for

storing temporary variable data and intermediate results.

8051 Microcontroller has both Internal ROM and Internal RAM. If the internal memory is

inadequate, you can add external memory using suitable circuits.

The internal data memory of 8051 is divided into two groups. These are a set of eight

registers, and a scratch pad memory. These eight registers are R0 to R7.

8051 Provides four register bank, but only one register bank can be used at any point of

time. To select the register bank, two bits of PSW (Program Status Word) are used.

The following addressing can be used to select register banks.

Address Range Register Bank
00H to 07H Register Bank 0
08H to 0FH Register Bank 1
10H to 17H Register Bank 2
18H to 1FH Register Bank 3

When the 8051 is reset, the Stack Pointer will point to 07H. It means the location 08H to

7FH can be used as a stack.

The scratch pad area will be 20H to 7FH.

From 20H to 2FH (16 bytes or 128 bits) can be used as bit addressable RAM.

For an example the instruction CLR 6FH, using this instruction it clears the location 6FH.

The remaining locations (30H to 7EH) of the RAM can be used to store variable data and

stack.

Special function registers:

There are 21 Special function registers (SFR) in 8051 micro controller and this includes

Register A, Register B, Processor Status Word (PSW), PCON etc.

There are 21 unique locations for these 21 special function registers and each of these

register is of 1 byte size.

Some of these special function registers are bit addressable (which means you can access

8 individual bits inside a single byte), while some others are only byte addressable.

Registers of 8051:

Register A/Accumulator:

The most important of all special function registers, is known as ACC or A. The

Accumulator holds the result of most of arithmetic and logic operations. ACC is usually

accessed by direct addressing and its physical address is E0H. Accumulator is both byte

and bit addressable.

Register B:

The major purpose of this register is in executing multiplication and division. The 8051

micro controller has a single instruction for multiplication (MUL) and division (DIV).

Ex: MUL A,B – When this instruction is executed, data inside A and data inside B is

multiplied and answer is stored in A.

For MUL and DIV instructions, it is necessary that the two operands must be in A and B.

Register B is also byte addressable and bit addressable. To access bit o or to access all 8

bits (as a single byte), physical address F0 is used.

Port Registers:

There are 4 ports named P0, P1, P2 and P3. Data must be written into port registers first

to send it out to any other external device through ports. Similarly, any data received

through ports must be read from port registers for performing any operation. All 4 port

registers are bit as well as byte addressable.

The physical address of port 0 is 80, port 1 is 90, port 2 is A0 and that of port 3 is B0.

Stack Pointer:

Known as SP, stack pointer represents a pointer to the system stack. Stack pointer is an

8-bit register, the direct address of SP is 81H and it is only byte addressable, which means

you can’t access individual bits of stack pointer. The content of the stack pointer points

to the last stored location of system stack. To store something new in system stack, the

SP must be incremented by 1 first and then execute the “store” command. Usually after a

system reset SP is initialized as 07H and data can be stored to stack from 08H onwards.

Power Management Register (PCON):

As the name indicates, this register is used for efficient power management of 8051 micro

controller. Commonly referred to as PCON register, this is a dedicated SFR for power

management alone.

Mobile phone automatically going into stand by mode when not used for a couple of

seconds or minutes. This is achieved by power management feature of the controller used

inside that phone.

Program Status Word (PSW):

Commonly known as the PSW register. This register reflects the status of the operation

that is being carried out in the processor. Register banks are selected using PSW register

bits – RS1 and RS0. PSW register is both bit and byte addressable. The physical address

of PSW starts from D0H.

Bit No Bit Symbol
Direct

Address Name Function

0 P D0 Parity

This bit will be set if ACC has odd number of 1’s
after an operation. If not, bit will remain
cleared.

1 – D1 User definable bit

2 OV D2 Overflow

OV flag is set if there is a carry from bit 6 but
not from bit 7 of an Arithmetic operation. It’s
also set if there is a carry from bit 7 (but not
from bit 6) of Acc

3 RS0 D3
Register Bank
select bit 0

LSB of the register bank select bit. Look for
explanation below this table.

4 RS1 D4
Register Bank
select bit 1 MSB of the register bank select bits.

5 F0 D5 Flag 0 User defined flag

6 AC D6
Auxiliary
carry

This bit is set if data is coming out from bit 3 to
bit 4 of Acc during an Arithmetic operation.

7 CY D7 Carry
Is set if data is coming out of bit 7 of Acc during
an Arithmetic operation.

The Data Pointer:

The Data Pointer (DPTR) is the 8051’s only user-accessible 16-bit (2-byte) register. DPTR

is meant for pointing to data. It is used by the 8051 to access external memory using the

address indicated by DPTR. DPTR is the only 16-bit register available and is often used to

store 2-byte values.

The Program Counter:

The Program Counter (PC) is a 2-byte address which tells the 8051 where the next

instruction to execute can be found in the memory. PC starts at 0000h when the 8051

initializes and is incremented every time after an instruction is executed. PC is not always

incremented by 1. Some instructions may require 2 or 3 bytes; in such cases, the PC will

be incremented by 2 or 3.

Interrupts in 8051:

The five sources of interrupts in 8051 Microcontroller:

 Timer 0 overflow interrupt - TF0

 External hardware interrupt - INT0

 Timer 1 overflow interrupt - TF1

 External hardware interrupt - INT1

 Serial communication interrupt - RI/TI

When interrupt occur then the microcontroller executes the interrupt service routine.

Therefore, the memory location corresponds to interrupt enables it.

All the interrupts can be set or cleared by some special function register that is also

known as interrupt enabled (IE), and it is totally depends on the priority, which is

executed by using interrupt priority register.

Interrupt Enable (IE) Register:

IE register is used for enabling and disabling the interrupt. This is a bit addressable

register in which EA value must be set to one for enabling interrupts.

Interrupt Priority Register (IP)

Using IP register, it is possible to change the priority levels of an interrupts by clearing or

setting the individual bit in the Interrupt priority (IP) register as shown in figure. It allows

the low priority interrupt can interrupt the high-priority interrupt, but it prohibits the

interruption by using another low-priority interrupt. If the priorities of interrupt are not

programmed, then microcontroller executes the instruction in a predefined manner and

its order are INT0, TF0, INT1, TF1, and SI.

Timers of 8051 and their Associated Registers:

The 8051 has two timers, Timer 0 and Timer 1. They can be used as timers or as event

counters. Both Timer 0 and Timer 1 are 16-bit wide. Since the 8051 follows an 8-bit

architecture, each 16 bit is accessed as two separate registers of low-byte and high-byte.

Timer 0 Register:

The 16-bit register of Timer 0 is accessed as low- and high-byte. The low-byte register is

called TL0 (Timer 0 low byte) and the high-byte register is called TH0 (Timer 0 high byte).

These registers can be accessed like any other register.

For example, the instruction MOV TL0, #4H moves the value into the low-byte of Timer

#0.

Timer 1 Register:

The 16-bit register of Timer 1 is accessed as low- and high-byte. The low-byte register is

called TL1 (Timer 1 low byte) and the high-byte register is called TH1 (Timer 1 high byte).

These registers can be accessed like any other register. For example, the instruction MOV

TL1, #4H moves the value into the low-byte of Timer 1.

TMOD (Timer Mode) Register:

Both Timer 0 and Timer 1 use the same register to set the various timer operation modes.

It is an 8-bit register in which the lower 4 bits are set aside for Timer 0 and the upper four

bits for Timers.

TCON register:

TCON is another register used to control operations of counter and timers in

microcontrollers. It is an 8-bit register wherein four upper bits are responsible for timers

and counters and lower bits are responsible for interrupts.

Addressing modes of 8051:

In 8051 There are six types of addressing modes.

 Immediate Addressing Mode

 Register Addressing Mode

 Direct Addressing Mode

 Register Indirect Addressing Mode

 Indexed Addressing Mode

 Implied Addressing Mode

Immediate addressing mode:

In this Immediate Addressing Mode, the data is provided in the instruction itself. The data

is provided immediately after the opcode.

MOV A, #0AFH;

MOV R3, #45H;

MOV DPTR, #FE00H;

symbol is used for immediate data.

Register addressing mode:

In the register addressing mode the source or destination data should be present in a

register (R0 to R7).

MOV A, R5;

MOV R2, #45H;

MOV R0, A;

MOV R0, R1 //Invalid instruction, GPR to GPR not possible//

Direct Addressing Mode:

In the Direct Addressing Mode, the source or destination address is specified by using 8-

bit data in the instruction. Only the internal data memory can be used in this mode.

MOV 80H, R6;

MOV R2, 45H;

MOV R0, 05H;

Register indirect addressing Mode:

In this mode, the source or destination address is given in the register. By using register

indirect addressing mode, the internal or external addresses can be accessed. The R0 and

R1 are used for 8-bit addresses, and DPTR is used for 16-bit addresses, no other registers

can be used for addressing purposes.

MOV 0E5H, @R0;

MOV @R1, 80H

@ symbol is used for register indirect addressing.

MOVX A, @R1;

MOV @DPTR, A;

X in MOVX indicates the external data memory.

Indexed addressing mode:

In the indexed addressing mode, the source memory can only be accessed from program

memory only. The destination operand is always the register A.

MOVC A, @A+PC;

MOVC A, @A+DPTR;

The C in MOVC instruction refers to code byte. For the first instruction, let us consider A

holds 30H. And the PC value is1125H. The contents of program memory location 1155H

(30H + 1125H) are moved to register A.

Implied Addressing Mode:

In the implied addressing mode, there will be a single operand. These types of instruction

can work on specific registers only. These types of instructions are also known as register

specific instruction.

RLA;

SWAP A;

Instruction set of 8051:

The instructions of 8051 Microcontroller can be classified into five different groups.

 Data Transfer Group

 Arithmetic Group

 Logical Group

 Program Branch Group

 Bit Processing Group also known as Boolean Variable Manipulation.

Like 8085, some instruction has two operands. The first operand is the Destination, and

the second operator is Source.

Data transfer group:

Arithmetic group:

Logical group:

Program branch group:

Bit manipulation group:

Assembler Directives:

The assembling directives give the directions to the CPU. The 8051 microcontroller

consists of various kinds of assembly directives to give the direction to the control unit.

The most useful directives are 8051 programming, such as:

ORG

DB

EQU

END

ORG (origin): This directive indicates the start of the program. This is used to set the

register address during assembly. For example; ORG 0000H tells the compiler all

subsequent code starting at address 0000H.

Syntax: ORG 0000H

DB (define byte): The define byte is used to allow a string of bytes. For example, print the

“EDGEFX” wherein each character is taken by the address and finally prints the “string”

by the DB directly with double quotes.

Syntax:

ORG 0000H

MOV A, #00H

————-

————-

DB ”EDGEFX”

EQU (equivalent): The equivalent directive is used to equate address of the variable.

Syntax:

reg equ,09H

—————–

—————–

MOV reg,#2H

END: The END directive is used to indicate the end of the program.

Syntax:

reg equ,09H

—————–

—————–

MOV reg, #2H

END

Assembly language program:

Addition:

ORG 0000H

MOV R0, #03H // move the value 3 to the register R0//

MOV A, #05H // move the value 5 to accumulator A//

Add A, 00H // add A value with R0 value and stores the result inA//

END

Multiplication:

ORG 0000H

MOV R0, #03H // move the value 3 to the register R0//

MOV A, #05H // move the value 5 to accumulator A//

MUL A, 03H // Multiplied result is stored in the Accumulator A //

END

Subtraction:

ORG 0000H

MOV R0, #03H // move the value 3 to register R0//

MOV A, #05H // move the value 5 to accumulator A//

SUBB A, 03H // Result value is stored in the Accumulator A //

END

Division:

ORG 0000H

MOV R0, #03H // move the value 3 to register R0//

MOV A, #15H // move the value 5 to accumulator A//

DIV A, 03H // final value is stored in the Accumulator A //

END

Treat R6-R7 and R4-R5 as two 16-bit registers. Perform subtraction between them. Store

the result in 20h (lower byte) and 21h (higher byte).

 CLR C ; clear carry

 MOV A, R4 ; get first lower byte

 SUBB A, R6 ; subtract it with other

 MOV 20H, A ; store the result

 MOV A, R5 ; get the first higher byte

 SUBB A, R7 ; subtract from other

 MOV 21H, A ; store the higher byte

 END

Jump, Loop and Call program:

Transfer the block of data from 20H to 30H to external location 1020H to 1030H.

Solution: – here we have to transfer 10 data bytes from internal to external RAM. So first,

we need one counter. Then we need two pointers one for source second for destination.

 MOV R7, #0AH ; initialize counter by 10d

 MOV R0, #20H ; get initial source location

 MOV DPTR, #1020H ; get initial destination location

 NXT: MOV A, @R0 ; get first content in acc

 MOVX @DPTR, A ; move it to external location

 INC R0 ; increment source location

 INC DPTR ; increase destination location

 DJNZ R7, NXT ; decrease r7. if zero then over otherwise move next

 END

Find out how many equal bytes between two memory blocks 10H to 20H and 20H to 30H.

Solution: – here we shall compare each byte one by one from both blocks. Increase the

count every time when equal bytes are found

 MOV R7, #0AH ; initialize counter by 10d

 MOV R0, #10H ; get initial location of block1

 MOV R1, #20H ; get initial location of block2

 MOV R6, #00H ; equal byte counter. Starts from zero

 NXT: MOV A, @R0 ; get content of block 1 in acc

 MOV B, A ; move it to B

 MOV A, @R1 ; get content of block 2 in acc

 CJNE A, B, NOMATCH ; compare both if equal

 INC R6 ; increment the counter

NOMATCH: INC R0 ; otherwise go for second number

 INC R1

 DJNZ R7, NXT ; decrease R7. if zero then over otherwise move next

Counters and subroutines:

The crystal frequency is given as 12 MHz. Make a subroutine that will generate delay of

exact 1 ms. Use this delay to generate square wave of 50 Hz on pin P2.0

Solution: – 50 Hz means 20 ms. And because of square wave 10 ms ontime and 10 ms

offtime. So for 10 ms we shall send 1 to port pin and for another 10 ms send 0 in

continuous loop.

 LOOP: MOV R6, #0AH ; load 10d in r6

 ACALL DELAY ; call 1 ms delay ×10 = 10 ms

 CLR P2.0 ; send 0 to port pin

 MOV R6, #0AH ; load 10d in r6

 ACALL DELAY ; call 1 ms delay ×10 = 10 ms

 SJMP LOOP ; continuous loop

 DELAY: ; load count 250d

 LP2: MOV R7, #0FAH

 LP1: NOP ; 1 cycle

 NOP ; 1+1=2 cycles

 DJNZ R7, LP1 ; 1+1+2 = 4 cycles

 DJNZ R6, LP2 ; 4×250 = 1000 cycles = 1000 µs = 1 ms

 RET

I/O programming:

1. Toggle all bits of P2 continuously

 MOV A,#55

BACK: MOV P2,A

 ACALL DELAY

 CPL A ;complement (invert) reg. A

 SJMP BACK

2. Port 1 is configured to be used as an output port, then to use it as an input port

again

MOV A ,#0FFH ;A = FF hex

MOV P1,A ;Make P1 an input port

MOV A,P1 ;get data from P1

MOV R7,A ;save it in Reg R7

ACALL DELAY ;wait

Serial communication in 8051:

Serial communication may be simplex, half-duplex or full-duplex.

Simplex communication means that data will be transmitted only in one direction while

half-duplex means data will be transmitted in both directions but at one time, only one

device can transmit, whereas full-duplex means data may be transmitted in both

directions at one time, while one device is transmitting, it can also receive data

transmitted from other devices at same time.

The transmitter and receiver are configured to communicate at some data transfer rate

before communication starts. This data transfer rate or a number of bits transmitted per

second is called the baud rate for handling serial communication.

Parallel communication is fast but it is not applicable for long distances (for printers).

Moreover, it is also expensive.

Serial is not much fast as parallel communication but it can deal with transmission of data

over longer distances (for telephone line, ADC, DAC).

It is also cheaper and requires less physical wires, that’s why we use serial

communication.

The “Serial Control” (SCON) is the SFR which is used to configure serial port.

METHODS OF SERIAL COMMUNICATION:

There are two methods of Serial Communication:

ASYNCHRONOUS and SYNCHRONOUS

SYNCHRONOUS: Transfer the block of data (characters) between sender and receiver

spaced by fixed time interval. This transmission is synchronized by an external clock.

ASYNCHRONOUS: There is no clock involved here and transmission is synchronized by

special signals along the transmission medium. It transfers a single byte at a time between

sender and receiver along with inserting a start bit before each data character and a stop

bit at its termination so that to inform the receiver where the data begins and ends. An

example is the interface between a keyboard and a computer. Keyboard is the transmitter

and the computer is the receiver.

We use USART and UART for serial communications. USART or UART is a microcontroller

peripheral which converts incoming and outgoing bytes of data into a serial bit stream.

Both have same work but with different methods which is explained below.

USART:

USART stands for Universal Synchronous/Asynchronous Receiver-Transmitter. USART

uses external clock so it needs separate line to carry the clock signal. Sending peripheral

generates a clock and the receiving peripheral recover from the data stream without

knowing the baud rate ahead of time. By use of external clock, USART’s data rate can be

much higher (up to rates of 4 Mbps) than that of a standard UART.

UART:

It stands for Universal Asynchronous Receiver-Transmitter. A UART generates its

internal data clock to the microcontroller. It synchronizes that clock with the data stream

by using the start bit transition. The receiver needs the baud rate to know ahead of time

to properly receive the data stream.

	Block Diagram of a Basic Microcomputer
	How does a Microprocessor Work?
	RISC Processor
	CISC Processor

